本文整理汇总了Python中sklearn.linear_model.MultiTaskLasso方法的典型用法代码示例。如果您正苦于以下问题:Python linear_model.MultiTaskLasso方法的具体用法?Python linear_model.MultiTaskLasso怎么用?Python linear_model.MultiTaskLasso使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sklearn.linear_model
的用法示例。
在下文中一共展示了linear_model.MultiTaskLasso方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_MultiTaskLasso
# 需要导入模块: from sklearn import linear_model [as 别名]
# 或者: from sklearn.linear_model import MultiTaskLasso [as 别名]
def test_MultiTaskLasso(fit_intercept):
"""Test that our MultiTaskLasso behaves as sklearn's."""
X, Y = build_dataset(n_samples=20, n_features=30, n_targets=10)
alpha_max = np.max(norm(X.T.dot(Y), axis=1)) / X.shape[0]
alpha = alpha_max / 2.
params = dict(alpha=alpha, fit_intercept=fit_intercept, tol=1e-10,
normalize=True)
clf = MultiTaskLasso(**params)
clf.verbose = 2
clf.fit(X, Y)
clf2 = sklearn_MultiTaskLasso(**params)
clf2.fit(X, Y)
np.testing.assert_allclose(clf.coef_, clf2.coef_, rtol=1e-5)
if fit_intercept:
np.testing.assert_allclose(clf.intercept_, clf2.intercept_)
clf.tol = 1e-7
check_estimator(clf)
示例2: _MTLassoCV_MatchSpace
# 需要导入模块: from sklearn import linear_model [as 别名]
# 或者: from sklearn.linear_model import MultiTaskLasso [as 别名]
def _MTLassoCV_MatchSpace(
X, Y, v_pens=None, n_v_cv=5, sample_frac=1, Y_col_block_size=None, se_factor=None, normalize=True, **kwargs
): # pylint: disable=missing-param-doc, unused-argument
# A fake MT would do Lasso on y_mean = Y.mean(axis=1)
if sample_frac < 1:
N = X.shape[0]
sample = np.random.choice(N, int(sample_frac * N), replace=False)
X = X[sample, :]
Y = Y[sample, :]
if Y_col_block_size is not None:
Y = _block_summ_cols(Y, Y_col_block_size)
varselectorfit = MultiTaskLassoCV(normalize=normalize, cv=n_v_cv, alphas=v_pens).fit(
X, Y
)
best_v_pen = varselectorfit.alpha_
if se_factor is not None:
best_v_pen = _neg_se_rule(varselectorfit, factor=se_factor)
varselectorfit = MultiTaskLasso(alpha=best_v_pen, normalize=normalize).fit(X, Y)
V = np.sqrt(
np.sum(np.square(varselectorfit.coef_), axis=0)
) # n_tasks x n_features -> n_feature
m_sel = V != 0
transformer = SelMatchSpace(m_sel)
return transformer, V[m_sel], best_v_pen, (V, varselectorfit)
示例3: test_model_multi_task_lasso
# 需要导入模块: from sklearn import linear_model [as 别名]
# 或者: from sklearn.linear_model import MultiTaskLasso [as 别名]
def test_model_multi_task_lasso(self):
model, X = fit_regression_model(linear_model.MultiTaskLasso(),
n_targets=2)
model_onnx = convert_sklearn(
model, "multi-task lasso",
[("input", FloatTensorType([None, X.shape[1]]))])
self.assertIsNotNone(model_onnx)
dump_data_and_model(
X,
model,
model_onnx,
verbose=False,
basename="SklearnMultiTaskLasso-Dec4",
allow_failure="StrictVersion("
"onnxruntime.__version__)"
"<= StrictVersion('0.2.1')",
)
示例4: _MTLassoMixed_MatchSpace
# 需要导入模块: from sklearn import linear_model [as 别名]
# 或者: from sklearn.linear_model import MultiTaskLasso [as 别名]
def _MTLassoMixed_MatchSpace(
X, Y, fit_model_wrapper, v_pens=None, n_v_cv=5, **kwargs
): # pylint: disable=missing-param-doc, unused-argument
# Note that MultiTaskLasso(CV).path with the same alpha doesn't produce same results as MultiTaskLasso(CV)
mtlasso_cv_fit = MultiTaskLassoCV(normalize=True, cv=n_v_cv, alphas=v_pens).fit(
X, Y
)
# V_cv = np.sqrt(np.sum(np.square(mtlasso_cv_fit.coef_), axis=0)) #n_tasks x n_features -> n_feature
# v_pen_cv = mtlasso_cv_fit.alpha_
# m_sel_cv = (V_cv!=0)
# sc_fit_cv = fit_model_wrapper(SelMatchSpace(m_sel_cv), V_cv[m_sel_cv])
v_pens = mtlasso_cv_fit.alphas_
# fits_single = {}
Vs_single = {}
scores = np.zeros((len(v_pens)))
# R2s = np.zeros((len(v_pens)))
for i, v_pen in enumerate(v_pens):
mtlasso_i_fit = MultiTaskLasso(alpha=v_pen, normalize=True).fit(X, Y)
V_i = np.sqrt(np.sum(np.square(mtlasso_i_fit.coef_), axis=0))
m_sel_i = V_i != 0
sc_fit_i = fit_model_wrapper(SelMatchSpace(m_sel_i), V_i[m_sel_i])
# fits_single[i] = sc_fit_i
Vs_single[i] = V_i
scores[i] = sc_fit_i.score
# R2s[i] = sc_fit_i.score_R2
i_best = np.argmin(scores)
# v_pen_best = v_pens[i_best]
# i_cv = np.where(v_pens==v_pen_cv)[0][0]
# print("CV alpha: " + str(v_pen_cv) + " (" + str(R2s[i_cv]) + ")." + " Best alpha: " + str(v_pen_best) + " (" + str(R2s[i_best]) + ") .")
best_v_pen = v_pens[i_best]
V_best = Vs_single[i_best]
m_sel_best = V_best != 0
return SelMatchSpace(m_sel_best), V_best[m_sel_best], best_v_pen, V_best
示例5: test_objectmapper
# 需要导入模块: from sklearn import linear_model [as 别名]
# 或者: from sklearn.linear_model import MultiTaskLasso [as 别名]
def test_objectmapper(self):
df = pdml.ModelFrame([])
self.assertIs(df.linear_model.ARDRegression, lm.ARDRegression)
self.assertIs(df.linear_model.BayesianRidge, lm.BayesianRidge)
self.assertIs(df.linear_model.ElasticNet, lm.ElasticNet)
self.assertIs(df.linear_model.ElasticNetCV, lm.ElasticNetCV)
self.assertIs(df.linear_model.HuberRegressor, lm.HuberRegressor)
self.assertIs(df.linear_model.Lars, lm.Lars)
self.assertIs(df.linear_model.LarsCV, lm.LarsCV)
self.assertIs(df.linear_model.Lasso, lm.Lasso)
self.assertIs(df.linear_model.LassoCV, lm.LassoCV)
self.assertIs(df.linear_model.LassoLars, lm.LassoLars)
self.assertIs(df.linear_model.LassoLarsCV, lm.LassoLarsCV)
self.assertIs(df.linear_model.LassoLarsIC, lm.LassoLarsIC)
self.assertIs(df.linear_model.LinearRegression, lm.LinearRegression)
self.assertIs(df.linear_model.LogisticRegression, lm.LogisticRegression)
self.assertIs(df.linear_model.LogisticRegressionCV, lm.LogisticRegressionCV)
self.assertIs(df.linear_model.MultiTaskLasso, lm.MultiTaskLasso)
self.assertIs(df.linear_model.MultiTaskElasticNet, lm.MultiTaskElasticNet)
self.assertIs(df.linear_model.MultiTaskLassoCV, lm.MultiTaskLassoCV)
self.assertIs(df.linear_model.MultiTaskElasticNetCV, lm.MultiTaskElasticNetCV)
self.assertIs(df.linear_model.OrthogonalMatchingPursuit, lm.OrthogonalMatchingPursuit)
self.assertIs(df.linear_model.OrthogonalMatchingPursuitCV, lm.OrthogonalMatchingPursuitCV)
self.assertIs(df.linear_model.PassiveAggressiveClassifier, lm.PassiveAggressiveClassifier)
self.assertIs(df.linear_model.PassiveAggressiveRegressor, lm.PassiveAggressiveRegressor)
self.assertIs(df.linear_model.Perceptron, lm.Perceptron)
self.assertIs(df.linear_model.RandomizedLasso, lm.RandomizedLasso)
self.assertIs(df.linear_model.RandomizedLogisticRegression, lm.RandomizedLogisticRegression)
self.assertIs(df.linear_model.RANSACRegressor, lm.RANSACRegressor)
self.assertIs(df.linear_model.Ridge, lm.Ridge)
self.assertIs(df.linear_model.RidgeClassifier, lm.RidgeClassifier)
self.assertIs(df.linear_model.RidgeClassifierCV, lm.RidgeClassifierCV)
self.assertIs(df.linear_model.RidgeCV, lm.RidgeCV)
self.assertIs(df.linear_model.SGDClassifier, lm.SGDClassifier)
self.assertIs(df.linear_model.SGDRegressor, lm.SGDRegressor)
self.assertIs(df.linear_model.TheilSenRegressor, lm.TheilSenRegressor)