本文整理汇总了Python中sklearn.linear_model.ElasticNetCV方法的典型用法代码示例。如果您正苦于以下问题:Python linear_model.ElasticNetCV方法的具体用法?Python linear_model.ElasticNetCV怎么用?Python linear_model.ElasticNetCV使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sklearn.linear_model
的用法示例。
在下文中一共展示了linear_model.ElasticNetCV方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: predict
# 需要导入模块: from sklearn import linear_model [as 别名]
# 或者: from sklearn.linear_model import ElasticNetCV [as 别名]
def predict(train):
binary = (train > 0)
reg = ElasticNetCV(fit_intercept=True, alphas=[
0.0125, 0.025, 0.05, .125, .25, .5, 1., 2., 4.])
norm = NormalizePositive()
train = norm.fit_transform(train)
filled = train.copy()
# iterate over all users
for u in range(train.shape[0]):
# remove the current user for training
curtrain = np.delete(train, u, axis=0)
bu = binary[u]
if np.sum(bu) > 5:
reg.fit(curtrain[:,bu].T, train[u, bu])
# Fill the values that were not there already
filled[u, ~bu] = reg.predict(curtrain[:,~bu].T)
return norm.inverse_transform(filled)
开发者ID:PacktPublishing,项目名称:Building-Machine-Learning-Systems-With-Python-Second-Edition,代码行数:21,代码来源:regression.py
示例2: fit_ensemble
# 需要导入模块: from sklearn import linear_model [as 别名]
# 或者: from sklearn.linear_model import ElasticNetCV [as 别名]
def fit_ensemble(x,y):
fit_type = jhkaggle.jhkaggle_config['FIT_TYPE']
if 1:
if fit_type == jhkaggle.const.FIT_TYPE_BINARY_CLASSIFICATION:
blend = SGDClassifier(loss="log", penalty="elasticnet") # LogisticRegression()
else:
# blend = SGDRegressor()
#blend = LinearRegression()
#blend = RandomForestRegressor(n_estimators=10, n_jobs=-1, max_depth=5, criterion='mae')
blend = LassoLarsCV(normalize=True)
#blend = ElasticNetCV(normalize=True)
#blend = LinearRegression(normalize=True)
blend.fit(x, y)
else:
blend = LogisticRegression()
blend.fit(x, y)
return blend
示例3: test_model_elastic_net_cv_regressor
# 需要导入模块: from sklearn import linear_model [as 别名]
# 或者: from sklearn.linear_model import ElasticNetCV [as 别名]
def test_model_elastic_net_cv_regressor(self):
model, X = fit_regression_model(linear_model.ElasticNetCV())
model_onnx = convert_sklearn(
model,
"scikit-learn elastic-net regression",
[("input", FloatTensorType([None, X.shape[1]]))],
)
self.assertIsNotNone(model_onnx)
dump_data_and_model(
X,
model,
model_onnx,
basename="SklearnElasticNetCV-Dec4",
allow_failure="StrictVersion("
"onnxruntime.__version__)"
"<= StrictVersion('0.2.1')",
)
示例4: get_new_clf
# 需要导入模块: from sklearn import linear_model [as 别名]
# 或者: from sklearn.linear_model import ElasticNetCV [as 别名]
def get_new_clf(solver, folds=3, alphas=100):
kf=KFold(n_splits=folds,shuffle=False)
if "linear" == solver:
clf = linear_model.LinearRegression(fit_intercept=False)
if "ridge" == solver:
alphas = np.arange(1/alphas, 10+ 1/alphas, 10/alphas)
clf = linear_model.RidgeCV(alphas=alphas, fit_intercept=False, cv=kf)
elif "lasso" == solver:
clf=linear_model.LassoCV(n_alphas=alphas, fit_intercept=False, cv=kf)
elif "elastic" == solver:
clf = linear_model.ElasticNetCV(n_alphas=alphas, fit_intercept=False, cv=kf)
return clf
示例5: _elast
# 需要导入模块: from sklearn import linear_model [as 别名]
# 或者: from sklearn.linear_model import ElasticNetCV [as 别名]
def _elast(self, tol=1e-4):
"""Function to do elastic net regression."""
regr = ElasticNetCV(fit_intercept=True, normalize=True,
max_iter=self.iter, tol=tol)
model = regr.fit(X=self.train_matrix, y=self.train_target)
coeff = regr.coef_
# Make the linear prediction.
pred = None
if self.predict:
data = model.predict(self.test_matrix)
pred = get_error(prediction=data,
target=self.test_target)['average']
return coeff, pred
示例6: test_decomposed_ratio
# 需要导入模块: from sklearn import linear_model [as 别名]
# 或者: from sklearn.linear_model import ElasticNetCV [as 别名]
def test_decomposed_ratio():
components = [Normal(mu=0.0), Normal(mu=0.25), Normal(mu=0.5)]
p0 = Mixture(components=components, weights=[0.45, 0.1, 0.45])
p1 = Mixture(components=[components[0]] + [components[2]])
ratio = DecomposedRatio(
ClassifierRatio(CalibratedClassifierCV(base_estimator=ElasticNetCV())))
ratio.fit(numerator=p0, denominator=p1, n_samples=10000)
reals = np.linspace(-0.5, 1.0, num=100).reshape(-1, 1)
assert ratio.score(reals, p0.pdf(reals) / p1.pdf(reals)) > -0.1
assert np.mean(np.abs(np.log(ratio.predict(reals)) -
ratio.predict(reals, log=True))) < 0.01
示例7: test_decomposed_ratio_identity
# 需要导入模块: from sklearn import linear_model [as 别名]
# 或者: from sklearn.linear_model import ElasticNetCV [as 别名]
def test_decomposed_ratio_identity():
components = [Normal(mu=0.0), Normal(mu=0.25), Normal(mu=0.5)]
p = Mixture(components=components, weights=[0.45, 0.1, 0.45])
ratio = DecomposedRatio(
ClassifierRatio(CalibratedClassifierCV(base_estimator=ElasticNetCV())))
ratio.fit(numerator=p, denominator=p, n_samples=10000)
reals = np.linspace(-0.5, 1.0, num=100).reshape(-1, 1)
assert ratio.score(reals, p.pdf(reals) / p.pdf(reals)) == 0.0
assert_array_almost_equal(ratio.predict(reals), np.ones(len(reals)))
assert_array_almost_equal(ratio.predict(reals, log=True),
np.zeros(len(reals)))
示例8: test_classifier_ratio
# 需要导入模块: from sklearn import linear_model [as 别名]
# 或者: from sklearn.linear_model import ElasticNetCV [as 别名]
def test_classifier_ratio():
for clf, calibration, cv in [(ElasticNetCV(), "histogram", 3),
(GaussianNB(), "kde", 3),
(ElasticNetCV(), "isotonic", 3),
(GaussianNB(), "sigmoid", 3)]:
yield check_classifier_ratio, clf, calibration, cv
示例9: test_classifier_ratio_identity
# 需要导入模块: from sklearn import linear_model [as 别名]
# 或者: from sklearn.linear_model import ElasticNetCV [as 别名]
def test_classifier_ratio_identity():
p = Normal(mu=0.0)
ratio = ClassifierRatio(
CalibratedClassifierCV(base_estimator=ElasticNetCV()))
ratio.fit(numerator=p, denominator=p, n_samples=10000)
reals = np.linspace(-0.5, 1.0, num=100).reshape(-1, 1)
assert ratio.score(reals, p.pdf(reals) / p.pdf(reals)) == 0.0
assert_array_almost_equal(ratio.predict(reals), np.ones(len(reals)))
assert_array_almost_equal(ratio.predict(reals, log=True),
np.zeros(len(reals)))
示例10: learn_model
# 需要导入模块: from sklearn import linear_model [as 别名]
# 或者: from sklearn.linear_model import ElasticNetCV [as 别名]
def learn_model(self, x, y, clf, lam = None):
if (lam is None and self.initlam != -1):
lam = self.initlam
if (clf is not None):
if (lam is not None):
clf = linear_model.ElasticNetCV(max_iter = 10000)
clf.fit(x, y)
lam = clf.alpha_
clf = linear_model.ElasticNet(alpha = lam, \
max_iter = 10000, \
warm_start = True)
clf.fit(x, y)
return clf, lam
示例11: test_objectmapper
# 需要导入模块: from sklearn import linear_model [as 别名]
# 或者: from sklearn.linear_model import ElasticNetCV [as 别名]
def test_objectmapper(self):
df = pdml.ModelFrame([])
self.assertIs(df.linear_model.ARDRegression, lm.ARDRegression)
self.assertIs(df.linear_model.BayesianRidge, lm.BayesianRidge)
self.assertIs(df.linear_model.ElasticNet, lm.ElasticNet)
self.assertIs(df.linear_model.ElasticNetCV, lm.ElasticNetCV)
self.assertIs(df.linear_model.HuberRegressor, lm.HuberRegressor)
self.assertIs(df.linear_model.Lars, lm.Lars)
self.assertIs(df.linear_model.LarsCV, lm.LarsCV)
self.assertIs(df.linear_model.Lasso, lm.Lasso)
self.assertIs(df.linear_model.LassoCV, lm.LassoCV)
self.assertIs(df.linear_model.LassoLars, lm.LassoLars)
self.assertIs(df.linear_model.LassoLarsCV, lm.LassoLarsCV)
self.assertIs(df.linear_model.LassoLarsIC, lm.LassoLarsIC)
self.assertIs(df.linear_model.LinearRegression, lm.LinearRegression)
self.assertIs(df.linear_model.LogisticRegression, lm.LogisticRegression)
self.assertIs(df.linear_model.LogisticRegressionCV, lm.LogisticRegressionCV)
self.assertIs(df.linear_model.MultiTaskLasso, lm.MultiTaskLasso)
self.assertIs(df.linear_model.MultiTaskElasticNet, lm.MultiTaskElasticNet)
self.assertIs(df.linear_model.MultiTaskLassoCV, lm.MultiTaskLassoCV)
self.assertIs(df.linear_model.MultiTaskElasticNetCV, lm.MultiTaskElasticNetCV)
self.assertIs(df.linear_model.OrthogonalMatchingPursuit, lm.OrthogonalMatchingPursuit)
self.assertIs(df.linear_model.OrthogonalMatchingPursuitCV, lm.OrthogonalMatchingPursuitCV)
self.assertIs(df.linear_model.PassiveAggressiveClassifier, lm.PassiveAggressiveClassifier)
self.assertIs(df.linear_model.PassiveAggressiveRegressor, lm.PassiveAggressiveRegressor)
self.assertIs(df.linear_model.Perceptron, lm.Perceptron)
self.assertIs(df.linear_model.RandomizedLasso, lm.RandomizedLasso)
self.assertIs(df.linear_model.RandomizedLogisticRegression, lm.RandomizedLogisticRegression)
self.assertIs(df.linear_model.RANSACRegressor, lm.RANSACRegressor)
self.assertIs(df.linear_model.Ridge, lm.Ridge)
self.assertIs(df.linear_model.RidgeClassifier, lm.RidgeClassifier)
self.assertIs(df.linear_model.RidgeClassifierCV, lm.RidgeClassifierCV)
self.assertIs(df.linear_model.RidgeCV, lm.RidgeCV)
self.assertIs(df.linear_model.SGDClassifier, lm.SGDClassifier)
self.assertIs(df.linear_model.SGDRegressor, lm.SGDRegressor)
self.assertIs(df.linear_model.TheilSenRegressor, lm.TheilSenRegressor)
示例12: calc_optimization_features
# 需要导入模块: from sklearn import linear_model [as 别名]
# 或者: from sklearn.linear_model import ElasticNetCV [as 别名]
def calc_optimization_features(optimization_method, freqs_bins, cond, meg_data_dic, elec_data, electrodes, from_t, to_t, optimization_params={}):
# scorer = make_scorer(rol_corr, False)
cv_parameters = []
if optimization_method in ['Ridge', 'RidgeCV', 'Lasso', 'LassoCV', 'ElasticNet', 'ElasticNetCV']:
# vstack all meg data, such that X.shape = T*n X F, where n is the electrodes num
# Y is T*n * 1
X = np.hstack((meg_data_dic[electrode][:, from_t:to_t] for electrode in electrodes))
Y = np.hstack((elec_data[electrode][cond][from_t:to_t] for electrode in electrodes))
funcs_dic = {'Ridge': Ridge(alpha=0.1), 'RidgeCV':RidgeCV(np.logspace(0, -10, 11)), # scoring=scorer
'Lasso': Lasso(alpha=1.0/X.shape[0]), 'LassoCV':LassoCV(alphas=np.logspace(0, -10, 11), max_iter=1000),
'ElasticNetCV': ElasticNetCV(alphas= np.logspace(0, -10, 11), l1_ratio=np.linspace(0, 1, 11))}
clf = funcs_dic[optimization_method]
clf.fit(X.T, Y)
p = clf.coef_
if len(p) != len(freqs_bins):
raise Exception('{} (len(clf.coef)) != {} (len(freqs_bin))!!!'.format(len(p), len(freqs_bins)))
if optimization_method in ['RidgeCV', 'LassoCV']:
cv_parameters = clf.alpha_
elif optimization_method == 'ElasticNetCV':
cv_parameters = [clf.alpha_, clf.l1_ratio_]
args = [(meg_pred(p, meg_data_dic[electrode][:, from_t:to_t]), elec_data[electrode][cond][from_t:to_t]) for electrode in electrodes]
p0 = leastsq(post_ridge_err_func, [1], args=args, maxfev=0)[0]
p = np.hstack((p0, p))
elif optimization_method in ['leastsq', 'dtw', 'minmax', 'diff_rms', 'rol_corr']:
args = ([(meg_data_dic[electrode][:, from_t:to_t], elec_data[electrode][cond][from_t:to_t]) for electrode in electrodes], optimization_params)
p0 = np.ones((1, len(freqs_bins)+1))
funcs_dic = {'leastsq': partial(leastsq, func=err_func, x0=p0, args=args),
'dtw': partial(minimize, fun=dtw_err_func, x0=p0, args=args),
'minmax': partial(minimize, fun=minmax_err_func, x0=p0, args=args),
'diff_rms': partial(minimize, fun=min_diff_rms_err_func, x0=p0, args=args),
'rol_corr': partial(minimize, fun=max_rol_corr, x0=p0, args=args)}
res = funcs_dic[optimization_method]()
p = res[0] if optimization_method=='leastsq' else res.x
cv_parameters = optimization_params
else:
raise Exception('Unknown optimization_method! {}'.format(optimization_method))
return p, cv_parameters
示例13: _train_enet
# 需要导入模块: from sklearn import linear_model [as 别名]
# 或者: from sklearn.linear_model import ElasticNetCV [as 别名]
def _train_enet(y, Z, X, include_ses=False, p_threshold=0.01):
log = logging.getLogger(pyfocus.LOG)
try:
from limix.qc import normalise_covariance
from sklearn.linear_model import ElasticNetCV
except ImportError as ie:
log.error("Training submodule requires limix>=2.0.0 and sklearn to be installed.")
raise
from scipy.linalg import lstsq
log.debug("Initializing ElasticNet model")
n = len(y)
attrs = dict()
K_cis = np.dot(Z, Z.T)
K_cis = normalise_covariance(K_cis)
fe_var, s2u, s2e, logl, fixed_betas, pval = _fit_cis_herit(y, K_cis, X)
if pval > p_threshold:
log.info("h2g pvalue {} greater than threshold {}. Skipping".format(pval, p_threshold))
return None
h2g = s2u / (s2u + s2e + fe_var)
attrs["h2g"] = h2g
attrs["h2g.logl"] = logl
attrs["h2g.pvalue"] = pval
# we only want to penalize SNP effects and not covariate effects...
fixed_betas, sum_resid, ranks, svals = lstsq(X, y)
yresid = y - np.dot(X, fixed_betas)
enet = ElasticNetCV(l1_ratio=0.5, fit_intercept=True, cv=5)
enet.fit(Z, yresid)
betas = enet.coef_
attrs["r2"] = enet.score(Z, yresid)
attrs["resid.var"] = sum((yresid - enet.predict(Z)) ** 2) / (n - 1)
if include_ses:
# TODO: bootstrap?
ses = None
else:
ses = None
return betas, ses, attrs