当前位置: 首页>>代码示例>>Python>>正文


Python isotonic.IsotonicRegression方法代码示例

本文整理汇总了Python中sklearn.isotonic.IsotonicRegression方法的典型用法代码示例。如果您正苦于以下问题:Python isotonic.IsotonicRegression方法的具体用法?Python isotonic.IsotonicRegression怎么用?Python isotonic.IsotonicRegression使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.isotonic的用法示例。


在下文中一共展示了isotonic.IsotonicRegression方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_IsotonicRegression

# 需要导入模块: from sklearn import isotonic [as 别名]
# 或者: from sklearn.isotonic import IsotonicRegression [as 别名]
def test_IsotonicRegression(self):
        # disable at this moment
        return
        """
        data = np.abs(np.random.randn(100))
        data = data.cumsum()
        df = pdml.ModelFrame(np.arange(len(data)), target=data)

        mod1 = df.isotonic.IsotonicRegression()
        mod2 = isotonic.IsotonicRegression()

        # df.fit(mod1)
        # mod2.fit(iris.data)

        # result = df.predict(mod1)
        # expected = mod2.predict(iris.data)

        # self.assertIsInstance(result, pdml.ModelSeries)
        # self.assert_numpy_array_almost_equal(result.values, expected)
        """ 
开发者ID:pandas-ml,项目名称:pandas-ml,代码行数:22,代码来源:test_isotonic.py

示例2: _build_harmonized_model

# 需要导入模块: from sklearn import isotonic [as 别名]
# 或者: from sklearn.isotonic import IsotonicRegression [as 别名]
def _build_harmonized_model(self):
        x = self.bins
        y = self.experimental

        _x = x[~np.isnan(y)]
        _y = y[~np.isnan(y)]
        regr = IsotonicRegression(increasing=True).fit(_x, _y)

        # create the model function
        def harmonize(x):
            """Monotonized Variogram

            Return the isotonic harmonized experimental variogram.
            This means, the experimental variogram is monotonic after harmonization.

            The harmonization is done using following Hinterding (2003) using 
            the PAVA algorithm (Barlow and Bartholomew, 1972).

            Returns
            -------
            gamma : numpy.ndarray
                monotonized experimental variogram
            
            References
            ----------
            Barlow, R., D. Bartholomew, et al. (1972): Statistical Interference Under Order Restrictions.
                John Wiley and Sons, New York.
            Hiterding, A. (2003): Entwicklung hybrider Interpolationsverfahren für den automatisierten Betrieb am
                Beispiel meteorologischer Größen. Dissertation, Institut für Geoinformatik, Westphälische
                Wilhelms-Universität Münster, IfGIprints, Münster. ISBN: 3-936616-12-4

            """

            if isinstance(x, (list, tuple, np.ndarray)):
                return regr.transform(x)
            else:
                return regr.transform([x])

        return harmonize 
开发者ID:mmaelicke,项目名称:scikit-gstat,代码行数:41,代码来源:Variogram.py

示例3: test_objectmapper

# 需要导入模块: from sklearn import isotonic [as 别名]
# 或者: from sklearn.isotonic import IsotonicRegression [as 别名]
def test_objectmapper(self):
        df = pdml.ModelFrame([])
        self.assertIs(df.isotonic.IsotonicRegression, isotonic.IsotonicRegression) 
开发者ID:pandas-ml,项目名称:pandas-ml,代码行数:5,代码来源:test_isotonic.py

示例4: __init__

# 需要导入模块: from sklearn import isotonic [as 别名]
# 或者: from sklearn.isotonic import IsotonicRegression [as 别名]
def __init__(self):
        self.clf = IsotonicRegression(y_min=0.0, y_max=1.0,
                                      out_of_bounds='clip') 
开发者ID:uber-research,项目名称:metropolis-hastings-gans,代码行数:5,代码来源:classification.py

示例5: calibrate_after_treatment_speed_model

# 需要导入模块: from sklearn import isotonic [as 别名]
# 或者: from sklearn.isotonic import IsotonicRegression [as 别名]
def calibrate_after_treatment_speed_model(
        times, after_treatment_warm_up_phases, after_treatment_speeds_delta,
        is_hybrid=False):
    """
    Calibrates the engine after treatment speed model.

    :param times:
        Time vector [s].
    :type times: numpy.array

    :param after_treatment_warm_up_phases:
        Phases when engine speed is affected by the after treatment warm up [-].
    :type after_treatment_warm_up_phases: numpy.array

    :param after_treatment_speeds_delta:
        Engine speed delta due to the after treatment warm up [RPM].
    :type after_treatment_speeds_delta: numpy.array

    :param is_hybrid:
        Is the vehicle hybrid?
    :type is_hybrid: bool

    :return:
        After treatment speed model.
    :rtype: function
    """
    if after_treatment_warm_up_phases.any():
        from sklearn.isotonic import IsotonicRegression
        x, y, model = [], [], IsotonicRegression(increasing=False)
        for i, j in co2_utl.index_phases(after_treatment_warm_up_phases):
            x.extend(times[i:j + 1] - (times[i] if is_hybrid else 0.0))
            y.extend(after_treatment_speeds_delta[i:j + 1])
        # noinspection PyUnresolvedReferences
        return model.fit(x, y).predict 
开发者ID:JRCSTU,项目名称:CO2MPAS-TA,代码行数:36,代码来源:after_treat.py

示例6: calibrate_after_treatment_power_model

# 需要导入模块: from sklearn import isotonic [as 别名]
# 或者: from sklearn.isotonic import IsotonicRegression [as 别名]
def calibrate_after_treatment_power_model(
        times, after_treatment_warm_up_phases, engine_powers_out,
        is_hybrid=False):
    """
    Calibrates the engine after treatment speed model.

    :param times:
        Time vector [s].
    :type times: numpy.array

    :param after_treatment_warm_up_phases:
        Phases when engine speed is affected by the after treatment warm up [-].
    :type after_treatment_warm_up_phases: numpy.array

    :param engine_powers_out:
        Engine power vector [kW].
    :type engine_powers_out: numpy.array

    :param is_hybrid:
        Is the vehicle hybrid?
    :type is_hybrid: bool

    :return:
        After treatment speed model.
    :rtype: function
    """
    if after_treatment_warm_up_phases.any():
        from sklearn.isotonic import IsotonicRegression
        x, y = [], []
        for i, j in co2_utl.index_phases(after_treatment_warm_up_phases):
            t = times[i:j + 1] - (times[i] if is_hybrid else 0.0)
            x.extend(t)
            y.extend(co2_utl.median_filter(t, engine_powers_out[i:j + 1], 4))
        # noinspection PyUnresolvedReferences
        return IsotonicRegression().fit(x, np.maximum(0, y)).predict 
开发者ID:JRCSTU,项目名称:CO2MPAS-TA,代码行数:37,代码来源:after_treat.py

示例7: _gspv_interpolate_cloud

# 需要导入模块: from sklearn import isotonic [as 别名]
# 或者: from sklearn.isotonic import IsotonicRegression [as 别名]
def _gspv_interpolate_cloud(powers, velocities):
    from sklearn.isotonic import IsotonicRegression
    from scipy.interpolate import InterpolatedUnivariateSpline
    regressor = IsotonicRegression()
    regressor.fit(powers, velocities)
    x = np.linspace(min(powers), max(powers))
    y = regressor.predict(x)
    return InterpolatedUnivariateSpline(x, y, k=1, ext=3)


# noinspection PyMissingOrEmptyDocstring,PyPep8Naming 
开发者ID:JRCSTU,项目名称:CO2MPAS-TA,代码行数:13,代码来源:gspv.py

示例8: fit

# 需要导入模块: from sklearn import isotonic [as 别名]
# 或者: from sklearn.isotonic import IsotonicRegression [as 别名]
def fit(self, T, y, sample_weight=None):
        """Fit using `T`, `y` as training data.

        Parameters
        ----------
        * `T` [array-like, shape=(n_samples,)]:
            Training data.

        * `y` [array-like, shape=(n_samples,)]:
            Training target.

        * `sample_weight` [array-like, shape=(n_samples,), optional]:
            Weights. If set to None, all weights will be set to 1.

        Returns
        -------
        * `self` [object]:
            `self`.

        Notes
        -----
        `T` is stored for future use, as `predict` needs T to interpolate
        new input data.
        """
        # Check input
        T = column_or_1d(T)

        # Fit isotonic regression
        self.ir_ = IsotonicRegression(y_min=self.y_min,
                                      y_max=self.y_max,
                                      increasing=self.increasing,
                                      out_of_bounds="clip")
        self.ir_.fit(T, y, sample_weight=sample_weight)

        # Interpolators
        if self.interpolation:
            p = self.ir_.transform(T)

            change_mask1 = (p - np.roll(p, 1)) > 0
            change_mask2 = np.roll(change_mask1, -1)
            change_mask1[0] = True
            change_mask1[-1] = True
            change_mask2[0] = True
            change_mask2[-1] = True

            self.interp1_ = interp1d(T[change_mask1], p[change_mask1],
                                     bounds_error=False,
                                     fill_value=(0., 1.))
            self.interp2_ = interp1d(T[change_mask2], p[change_mask2],
                                     bounds_error=False,
                                     fill_value=(0., 1.))

        return self 
开发者ID:diana-hep,项目名称:carl,代码行数:55,代码来源:calibration.py

示例9: isotonic_calibration_learner

# 需要导入模块: from sklearn import isotonic [as 别名]
# 或者: from sklearn.isotonic import IsotonicRegression [as 别名]
def isotonic_calibration_learner(df: pd.DataFrame,
                                 target_column: str = "target",
                                 prediction_column: str = "prediction",
                                 output_column: str = "calibrated_prediction",
                                 y_min: float = 0.0,
                                 y_max: float = 1.0) -> LearnerReturnType:
    """
    Fits a single feature isotonic regression to the dataset.

    Parameters
    ----------

    df : pandas.DataFrame
        A Pandas' DataFrame with features and target columns.
        The model will be trained to predict the target column
        from the features.

    target_column : str
        The name of the column in `df` that should be used as target for the model.
        This column should be binary, since this is a classification model.

    prediction_column : str
        The name of the column with the uncalibrated predictions from the model.

    output_column : str
        The name of the column with the calibrated predictions from the model.

    y_min: float
        Lower bound of Isotonic Regression

    y_max: float
        Upper bound of Isotonic Regression

    """

    clf = IsotonicRegression(y_min=y_min, y_max=y_max, out_of_bounds='clip')

    clf.fit(df[prediction_column], df[target_column])

    def p(new_df: pd.DataFrame) -> pd.DataFrame:
        return new_df.assign(**{output_column: clf.predict(new_df[prediction_column])})

    p.__doc__ = learner_pred_fn_docstring("isotonic_calibration_learner")

    log = {'isotonic_calibration_learner': {
        'output_column': output_column,
        'target_column': target_column,
        'prediction_column': prediction_column,
        'package': "sklearn",
        'package_version': sklearn.__version__,
        'training_samples': len(df)},
        'object': clf}

    return p, p(df), log 
开发者ID:nubank,项目名称:fklearn,代码行数:56,代码来源:calibration.py


注:本文中的sklearn.isotonic.IsotonicRegression方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。