本文整理汇总了Python中sklearn.grid_search.GridSearchCV方法的典型用法代码示例。如果您正苦于以下问题:Python grid_search.GridSearchCV方法的具体用法?Python grid_search.GridSearchCV怎么用?Python grid_search.GridSearchCV使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sklearn.grid_search
的用法示例。
在下文中一共展示了grid_search.GridSearchCV方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: grid_search_model
# 需要导入模块: from sklearn import grid_search [as 别名]
# 或者: from sklearn.grid_search import GridSearchCV [as 别名]
def grid_search_model(clf_factory, X, Y):
cv = ShuffleSplit(
n=len(X), n_iter=10, test_size=0.3, indices=True, random_state=0)
param_grid = dict(vect__ngram_range=[(1, 1), (1, 2), (1, 3)],
vect__min_df=[1, 2],
vect__stop_words=[None, "english"],
vect__smooth_idf=[False, True],
vect__use_idf=[False, True],
vect__sublinear_tf=[False, True],
vect__binary=[False, True],
clf__alpha=[0, 0.01, 0.05, 0.1, 0.5, 1],
)
grid_search = GridSearchCV(clf_factory(),
param_grid=param_grid,
cv=cv,
score_func=f1_score,
verbose=10)
grid_search.fit(X, Y)
clf = grid_search.best_estimator_
print clf
return clf
开发者ID:PacktPublishing,项目名称:Building-Machine-Learning-Systems-With-Python-Second-Edition,代码行数:26,代码来源:02_tuning.py
示例2: __grid_search_model
# 需要导入模块: from sklearn import grid_search [as 别名]
# 或者: from sklearn.grid_search import GridSearchCV [as 别名]
def __grid_search_model(clf_factory, X, Y):
cv = ShuffleSplit(
n=len(X), n_iter=10, test_size=0.3, indices=True, random_state=0)
param_grid = dict(vect__ngram_range=[(1, 1), (1, 2), (1, 3)],
vect__min_df=[1, 2],
vect__smooth_idf=[False, True],
vect__use_idf=[False, True],
vect__sublinear_tf=[False, True],
vect__binary=[False, True],
clf__alpha=[0, 0.01, 0.05, 0.1, 0.5, 1],
)
grid_search = GridSearchCV(clf_factory(),
param_grid=param_grid,
cv=cv,
score_func=f1_score,
verbose=10)
grid_search.fit(X, Y)
clf = grid_search.best_estimator_
print clf
return clf
开发者ID:PacktPublishing,项目名称:Building-Machine-Learning-Systems-With-Python-Second-Edition,代码行数:25,代码来源:04_sent.py
示例3: nestedCrossValidation
# 需要导入模块: from sklearn import grid_search [as 别名]
# 或者: from sklearn.grid_search import GridSearchCV [as 别名]
def nestedCrossValidation(X, y, cvFolds, estimator):
kf = KFold(len(X), n_folds=cvFolds, shuffle=True, random_state = 30)
cv_j=0
param_grid = {'alpha': [0.0000001,0.000001,0.00001,0.0001,0.001,0.01,0.1,1,10,100,1000,10000,100000, 1000000, 10000000,1000000000]}
r2 = np.zeros((cvFolds,1))
for train_index, test_index in kf:
train_X = X[train_index,:]
test_X = X[test_index,:]
train_y = y[train_index]
test_y = y[test_index]
grid = GridSearchCV(estimator, param_grid=param_grid, verbose=0, cv=cvFolds, scoring='mean_squared_error')
grid.fit(train_X,train_y)
y_true, y_pred = test_y,grid.best_estimator_.predict(test_X)
r2[cv_j] = r2_score(y_true, y_pred)
cv_j = cv_j + 1
return r2
#%% main script
示例4: parameterChoosing
# 需要导入模块: from sklearn import grid_search [as 别名]
# 或者: from sklearn.grid_search import GridSearchCV [as 别名]
def parameterChoosing(self):
# Set the parameters by cross-validation
tuned_parameters = [{'max_features': ['sqrt', 'log2', None],
'max_depth': range(2,1000),
}
]
reg = GridSearchCV(DecisionTreeRegressor(), tuned_parameters, cv=5, scoring='mean_squared_error')
reg.fit(self.X_train, self.y_train)
print "Best parameters set found on development set:\n"
print reg.best_params_
print "Grid scores on development set:\n"
for params, mean_score, scores in reg.grid_scores_:
print "%0.3f (+/-%0.03f) for %r\n" % (mean_score, scores.std() * 2, params)
print "MSE for test data set:\n"
y_true, y_pred = self.y_test, reg.predict(self.X_test)
print mean_squared_error(y_true, y_pred)
示例5: parameterChoosing
# 需要导入模块: from sklearn import grid_search [as 别名]
# 或者: from sklearn.grid_search import GridSearchCV [as 别名]
def parameterChoosing(self):
# Set the parameters by cross-validation
tuned_parameters = [{'alpha': np.logspace(-5,5)
}
]
reg = GridSearchCV(linear_model.Ridge(alpha = 0.5), tuned_parameters, cv=5, scoring='mean_squared_error')
reg.fit(self.X_train, self.y_train)
print "Best parameters set found on development set:\n"
print reg.best_params_
print "Grid scores on development set:\n"
for params, mean_score, scores in reg.grid_scores_:
print "%0.3f (+/-%0.03f) for %r\n" % (mean_score, scores.std() * 2, params)
print reg.scorer_
print "MSE for test data set:"
y_true, y_pred = self.y_test, reg.predict(self.X_test)
print mean_squared_error(y_pred, y_true)
示例6: parameterChoosing
# 需要导入模块: from sklearn import grid_search [as 别名]
# 或者: from sklearn.grid_search import GridSearchCV [as 别名]
def parameterChoosing(self):
# Set the parameters by cross-validation
tuned_parameters = [{'weights': ['uniform', 'distance'],
'n_neighbors': range(2,100)
}
]
reg = GridSearchCV(neighbors.KNeighborsRegressor(), tuned_parameters, cv=5, scoring='mean_squared_error')
reg.fit(self.X_train, self.y_train)
print "Best parameters set found on development set:\n"
print reg.best_params_
print "Grid scores on development set:\n"
for params, mean_score, scores in reg.grid_scores_:
print "%0.3f (+/-%0.03f) for %r\n" % (mean_score, scores.std() * 2, params)
print reg.scorer_
print "MSE for test data set:"
y_true, y_pred = self.y_test, reg.predict(self.X_test)
print mean_squared_error(y_pred, y_true)
示例7: parameterChoosing
# 需要导入模块: from sklearn import grid_search [as 别名]
# 或者: from sklearn.grid_search import GridSearchCV [as 别名]
def parameterChoosing(self):
#Set the parameters by cross-validation
tuned_parameters = [{'max_depth': range(20,60),
'n_estimators': range(10,40),
'max_features': ['sqrt', 'log2', None]
}
]
clf = GridSearchCV(RandomForestRegressor(n_estimators=30), tuned_parameters, cv=5, scoring='mean_squared_error')
clf.fit(self.X_train, self.y_train.ravel())
print "Best parameters set found on development set:\n"
print clf.best_params_
print "Grid scores on development set:\n"
for params, mean_score, scores in clf.grid_scores_:
print "%0.3f (+/-%0.03f) for %r\n" % (mean_score, scores.std() * 2, params)
print "MSE for test data set:\n"
y_true, y_pred = self.y_test, clf.predict(self.X_test)
print mean_squared_error(y_true, y_pred)
示例8: parameterChoosing
# 需要导入模块: from sklearn import grid_search [as 别名]
# 或者: from sklearn.grid_search import GridSearchCV [as 别名]
def parameterChoosing(self):
# Set the parameters by cross-validation
tuned_parameters = [{'kernel': ['rbf'],
'gamma': np.logspace(-4, 3, 30),
'C': [1e-3, 1e-2, 1e-1, 1, 10, 100, 1000]},
{'kernel': ['poly'],
'degree': [1, 2, 3, 4],
'C': [1e-3, 1e-2, 1e-1, 1, 10, 100, 1000],
'coef0': np.logspace(-4, 3, 30)},
{'kernel': ['linear'],
'C': [1e-3, 1e-2, 1e-1, 1, 10, 100, 1000]}]
clf = GridSearchCV(svm.SVC(C=1), tuned_parameters, cv=5, scoring='precision_weighted')
clf.fit(self.X_train, self.y_train.ravel())
print "Best parameters set found on development set:\n"
print clf.best_params_
print "Grid scores on development set:\n"
for params, mean_score, scores in clf.grid_scores_:
print "%0.3f (+/-%0.03f) for %r\n" % (mean_score, scores.std() * 2, params)
print "Detailed classification report:\n"
y_true, y_pred = self.y_test, clf.predict(self.X_test)
print classification_report(y_true, y_pred)
示例9: parameterChoosing
# 需要导入模块: from sklearn import grid_search [as 别名]
# 或者: from sklearn.grid_search import GridSearchCV [as 别名]
def parameterChoosing(self):
# Set the parameters by cross-validation
tuned_parameters = [{'penalty': ['l1'],
'C': np.logspace(-5,5)},
{'penalty': ['l2'],
'C': np.logspace(-5,5)}]
clf = GridSearchCV(linear_model.LogisticRegression(tol=1e-6), tuned_parameters, cv=5, scoring='precision_weighted')
clf.fit(self.X_train, self.y_train.ravel())
print "Best parameters set found on development set:\n"
print clf.best_params_
print "Grid scores on development set:\n"
for params, mean_score, scores in clf.grid_scores_:
print "%0.3f (+/-%0.03f) for %r\n" % (mean_score, scores.std() * 2, params)
print "Detailed classification report:\n"
y_true, y_pred = self.y_test, clf.predict(self.X_test)
print classification_report(y_true, y_pred)
示例10: parameterChoosing
# 需要导入模块: from sklearn import grid_search [as 别名]
# 或者: from sklearn.grid_search import GridSearchCV [as 别名]
def parameterChoosing(self):
# Set the parameters by cross-validation
tuned_parameters = [{'weights': ['uniform', 'distance'],
'n_neighbors': range(2,60)
}
]
clf = GridSearchCV(neighbors.KNeighborsClassifier(), tuned_parameters, cv=5, scoring='precision_weighted')
clf.fit(self.X_train, self.y_train.ravel())
print "Best parameters set found on development set:\n"
print clf.best_params_
print "Grid scores on development set:\n"
for params, mean_score, scores in clf.grid_scores_:
print "%0.3f (+/-%0.03f) for %r\n" % (mean_score, scores.std() * 2, params)
print "Detailed classification report:\n"
y_true, y_pred = self.y_test, clf.predict(self.X_test)
print classification_report(y_true, y_pred)
示例11: parameterChoosing
# 需要导入模块: from sklearn import grid_search [as 别名]
# 或者: from sklearn.grid_search import GridSearchCV [as 别名]
def parameterChoosing(self):
# Set the parameters by cross-validation
tuned_parameters = [{'max_depth': range(2,60),
'max_features': ['sqrt', 'log2', None]
}
]
clf = GridSearchCV(DecisionTreeClassifier(max_depth=5), tuned_parameters, cv=5, scoring='precision_weighted')
clf.fit(self.X_train, self.y_train.ravel())
print "Best parameters set found on development set:\n"
print clf.best_params_
print "Grid scores on development set:\n"
for params, mean_score, scores in clf.grid_scores_:
print "%0.3f (+/-%0.03f) for %r\n" % (mean_score, scores.std() * 2, params)
print "Detailed classification report:\n"
y_true, y_pred = self.y_test, clf.predict(self.X_test)
print classification_report(y_true, y_pred)
示例12: test_same_result
# 需要导入模块: from sklearn import grid_search [as 别名]
# 或者: from sklearn.grid_search import GridSearchCV [as 别名]
def test_same_result(self):
X, y, Z = self.make_classification(2, 40000, nonnegative=True)
parameters = {'alpha': [0.1, 1, 10]}
fit_params = {'classes': np.unique(y)}
local_estimator = MultinomialNB()
local_grid = GridSearchCV(estimator=local_estimator,
param_grid=parameters)
estimator = SparkMultinomialNB()
grid = SparkGridSearchCV(estimator=estimator,
param_grid=parameters,
fit_params=fit_params)
local_grid.fit(X, y)
grid.fit(Z)
locscores = [r.mean_validation_score for r in local_grid.grid_scores_]
scores = [r.mean_validation_score for r in grid.grid_scores_]
assert_array_almost_equal(locscores, scores, decimal=2)
示例13: compute_svm_score_nestedCV
# 需要导入模块: from sklearn import grid_search [as 别名]
# 或者: from sklearn.grid_search import GridSearchCV [as 别名]
def compute_svm_score_nestedCV(K, y, n_folds,
scoring=balanced_accuracy_scoring,
random_state=None,
param_grid=[{'C': np.logspace(-5, 5, 25)}]):
"""Compute cross-validated score of SVM using precomputed kernel.
"""
cv = StratifiedKFold(y, n_folds=n_folds, shuffle=True,
random_state=random_state)
scores = np.zeros(n_folds)
for i, (train, test) in enumerate(cv):
cvclf = SVC(kernel='precomputed')
y_train = y[train]
cvcv = StratifiedKFold(y_train, n_folds=n_folds,
shuffle=True,
random_state=random_state)
clf = GridSearchCV(cvclf, param_grid=param_grid, scoring=scoring,
cv=cvcv, n_jobs=1)
clf.fit(K[train, :][:, train], y_train)
# print clf.best_params_
scores[i] = clf.score(K[test, :][:, train], y[test])
return scores.mean()
示例14: test_cv_pipeline
# 需要导入模块: from sklearn import grid_search [as 别名]
# 或者: from sklearn.grid_search import GridSearchCV [as 别名]
def test_cv_pipeline(self):
pipeline = SKL_Pipeline([
('vect', SKL_HashingVectorizer(n_features=20)),
('tfidf', SKL_TfidfTransformer(use_idf=False)),
('lasso', SKL_Lasso())
])
parameters = {
'lasso__alpha': (0.001, 0.005, 0.01)
}
grid_search = GridSearchCV(self.sc, pipeline, parameters)
data = [('hi there', 0.0),
('what is up', 1.0),
('huh', 1.0),
('now is the time', 5.0),
('for what', 0.0),
('the spark was there', 5.0),
('and so', 3.0),
('were many socks', 0.0),
('really', 1.0),
('too cool', 2.0)]
df = self.sql.createDataFrame(data, ["review", "rating"]).toPandas()
skl_gs = grid_search.fit(df.review.values, df.rating.values)
assert len(skl_gs.cv_results_['params']) == len(parameters['lasso__alpha'])
示例15: fit
# 需要导入模块: from sklearn import grid_search [as 别名]
# 或者: from sklearn.grid_search import GridSearchCV [as 别名]
def fit(self, X, y, featurename=[]):
self.dim_ = X.shape[1]
self.setfeaturename(featurename)
self.setdefaultpred(y)
param_grid = {"max_depth": self.max_depth_, "min_samples_leaf": self.min_samples_leaf_}
if self.modeltype_ == 'regression':
mdl = tree.DecisionTreeRegressor()
elif self.modeltype_ == 'classification':
mdl = tree.DecisionTreeClassifier()
grid_search = GridSearchCV(mdl, param_grid=param_grid, cv=self.cv_)
grid_search.fit(X, y)
mdl = grid_search.best_estimator_
self.__parseTree(mdl)
self.weight_ = np.ones(len(self.rule_))