本文整理汇总了Python中sklearn.externals.six.string_types方法的典型用法代码示例。如果您正苦于以下问题:Python six.string_types方法的具体用法?Python six.string_types怎么用?Python six.string_types使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sklearn.externals.six
的用法示例。
在下文中一共展示了six.string_types方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: is_iterable
# 需要导入模块: from sklearn.externals import six [as 别名]
# 或者: from sklearn.externals.six import string_types [as 别名]
def is_iterable(x):
"""Python 3.x adds the ``__iter__`` attribute
to strings. Thus, our previous tests for iterable
will fail when using ``hasattr``.
Parameters
----------
x : object
The object or primitive to test whether
or not is an iterable.
Returns
-------
bool
True if ``x`` is an iterable
"""
if isinstance(x, six.string_types):
return False
return hasattr(x, '__iter__')
示例2: _val_cols
# 需要导入模块: from sklearn.externals import six [as 别名]
# 或者: from sklearn.externals.six import string_types [as 别名]
def _val_cols(cols):
# if it's None, return immediately
if cols is None:
return cols
# try to make cols a list
if not is_iterable(cols):
if isinstance(cols, six.string_types):
return [cols]
else:
raise ValueError('cols must be an iterable sequence')
# if it is an index or a np.ndarray, it will have a built-in
# (potentially more efficient tolist() method)
if hasattr(cols, 'tolist') and hasattr(cols.tolist, '__call__'):
return cols.tolist()
# make it a list implicitly, make no guarantees about elements
return [c for c in cols]
示例3: validate_x
# 需要导入模块: from sklearn.externals import six [as 别名]
# 或者: from sklearn.externals.six import string_types [as 别名]
def validate_x(x):
"""Given an iterable or None, ``x``, validate that if
it is an iterable, it only contains string types.
Parameters
----------
x : None or iterable, shape=(n_features,)
The feature names
Returns
-------
x : None or iterable, shape=(n_features,)
The feature names
"""
if x is not None:
# validate feature_names
if not (is_iterable(x) and all([isinstance(i, six.string_types) for i in x])):
raise TypeError('x must be an iterable of strings. '
'Got %s' % str(x))
return x
示例4: _val_values
# 需要导入模块: from sklearn.externals import six [as 别名]
# 或者: from sklearn.externals.six import string_types [as 别名]
def _val_values(vals):
"""Validate that all values in the iterable
are either numeric, or in ('mode', 'median', 'mean').
If not, will raise a TypeError
Raises
------
``TypeError`` if not all values are numeric or
in valid values.
"""
if not all([
(is_numeric(i) or (isinstance(i, six.string_types)) and i in ('mode', 'mean', 'median'))
for i in vals
]):
raise TypeError('All values in self.fill must be numeric or in ("mode", "mean", "median"). '
'Got: %s' % ', '.join(vals))
示例5: _to_absolute_max_features
# 需要导入模块: from sklearn.externals import six [as 别名]
# 或者: from sklearn.externals.six import string_types [as 别名]
def _to_absolute_max_features(max_features, n_features, is_classification=False):
if max_features is None:
return n_features
elif isinstance(max_features, string_types):
if max_features == "auto":
return max(1, int(np.sqrt(n_features))) if is_classification else n_features
elif max_features == 'sqrt':
return max(1, int(np.sqrt(n_features)))
elif max_features == "log2":
return max(1, int(np.log2(n_features)))
else:
raise ValueError(
'Invalid value for max_features. Allowed string '
'values are "auto", "sqrt" or "log2".')
elif isinstance(max_features, (numbers.Integral, np.integer)):
return max_features
else: # float
if max_features > 0.0:
return max(1, int(max_features * n_features))
else:
return 0
示例6: is_iterable
# 需要导入模块: from sklearn.externals import six [as 别名]
# 或者: from sklearn.externals.six import string_types [as 别名]
def is_iterable(x):
"""Determine whether an item is iterable.
Python 3 introduced the ``__iter__`` functionality to
strings, making them falsely behave like iterables. This
function determines whether an object is an iterable given
the presence of the ``__iter__`` method and that the object
is *not* a string.
Parameters
----------
x : int, object, str, iterable, None
The object in question. Could feasibly be any type.
"""
if isinstance(x, six.string_types):
return False
return hasattr(x, "__iter__")
开发者ID:PacktPublishing,项目名称:Hands-on-Supervised-Machine-Learning-with-Python,代码行数:19,代码来源:validation.py
示例7: _val_exp_loss_prem
# 需要导入模块: from sklearn.externals import six [as 别名]
# 或者: from sklearn.externals.six import string_types [as 别名]
def _val_exp_loss_prem(x, y, z):
"""Takes three strings (or unicode) and cleans them
for indexing an H2OFrame.
Parameters
----------
x : str
exp name
y : str
loss name
z : str
premium name
Returns
-------
out : tuple
exp : str
The name of the exp feature (``x``)
loss : str
The name of the loss feature (``y``)
prem : str or None
The name of the prem feature (``z``)
"""
if not all([isinstance(i, six.string_types) for i in (x, y)]):
raise TypeError('exposure and loss must be strings or unicode')
if z is not None:
if not isinstance(z, six.string_types):
raise TypeError('premium must be None or string or unicode')
out = (str(x), str(y), str(z) if z is not None else z)
return out
示例8: _kv_str
# 需要导入模块: from sklearn.externals import six [as 别名]
# 或者: from sklearn.externals.six import string_types [as 别名]
def _kv_str(k, v):
k = str(k) # h2o likes unicode...
# likewise, if the v is unicode, let's make it a string.
v = v if not isinstance(v, six.string_types) else str(v)
return k, v
示例9: _val_y
# 需要导入模块: from sklearn.externals import six [as 别名]
# 或者: from sklearn.externals.six import string_types [as 别名]
def _val_y(y):
if isinstance(y, six.string_types):
return str(y)
elif y is None:
return y
raise TypeError('y must be a string. Got %s' % y)
示例10: _validate_target
# 需要导入模块: from sklearn.externals import six [as 别名]
# 或者: from sklearn.externals.six import string_types [as 别名]
def _validate_target(y):
if (not y) or (not isinstance(y, six.string_types)):
raise ValueError('y must be a column name')
return str(y) # force string
示例11: _check_stop_list
# 需要导入模块: from sklearn.externals import six [as 别名]
# 或者: from sklearn.externals.six import string_types [as 别名]
def _check_stop_list(stop):
if stop == "english":
return ENGLISH_STOP_WORDS
elif isinstance(stop, six.string_types):
raise ValueError("not a built-in stop list: %s" % stop)
elif stop is None:
return None
else: # assume it's a collection
return frozenset(stop)
示例12: __getitem__
# 需要导入模块: from sklearn.externals import six [as 别名]
# 或者: from sklearn.externals.six import string_types [as 别名]
def __getitem__(self, key):
if (isinstance(key, string_types) or
(isinstance(key, (tuple, list)) and
any(isinstance(x, string_types) for x in key))):
msg = "Features indexing only subsets rows, but got {!r}"
raise TypeError(msg.format(key))
if np.isscalar(key):
return self.features[key]
else:
return type(self)(self.features[key], copy=False, stack=False,
**{k: v[key] for k, v in iteritems(self.meta)})
示例13: get_memory
# 需要导入模块: from sklearn.externals import six [as 别名]
# 或者: from sklearn.externals.six import string_types [as 别名]
def get_memory(memory):
if isinstance(memory, string_types):
return Memory(memory, verbose=0)
return memory
示例14: _daal4py_compute_starting_centroids
# 需要导入模块: from sklearn.externals import six [as 别名]
# 或者: from sklearn.externals.six import string_types [as 别名]
def _daal4py_compute_starting_centroids(X, X_fptype, nClusters, cluster_centers_0, random_state):
def is_string(s, target_str):
return isinstance(s, string_types) and s == target_str
deterministic = False
if is_string(cluster_centers_0, 'k-means++'):
_seed = random_state.randint(np.iinfo('i').max)
daal_engine = daal4py.engines_mt19937(fptype=X_fptype, method='defaultDense', seed=_seed)
_n_local_trials = 2 + int(np.log(nClusters))
kmeans_init = daal4py.kmeans_init(nClusters, fptype=X_fptype,
nTrials=_n_local_trials, method='plusPlusDense', engine=daal_engine)
kmeans_init_res = kmeans_init.compute(X)
centroids_ = kmeans_init_res.centroids
elif is_string(cluster_centers_0, 'random'):
_seed = random_state.randint(np.iinfo('i').max)
daal_engine = daal4py.engines_mt19937(seed=_seed, fptype=X_fptype, method='defaultDense')
kmeans_init = daal4py.kmeans_init(nClusters, fptype=X_fptype, method='randomDense', engine=daal_engine)
kmeans_init_res = kmeans_init.compute(X)
centroids_ = kmeans_init_res.centroids
elif hasattr(cluster_centers_0, '__array__'):
deterministic = True
cc_arr = np.ascontiguousarray(cluster_centers_0, dtype=X.dtype)
_validate_center_shape(X, nClusters, cc_arr)
centroids_ = cc_arr
elif callable(cluster_centers_0):
cc_arr = cluster_centers_0(X, nClusters, random_state)
cc_arr = np.ascontiguousarray(cc_arr, dtype=X.dtype)
_validate_center_shape(X, nClusters, cc_arr)
centroids_ = cc_arr
elif is_string(cluster_centers_0, 'deterministic'):
deterministic = True
kmeans_init = daal4py.kmeans_init(nClusters, fptype=X_fptype, method='defaultDense')
kmeans_init_res = kmeans_init.compute(X)
centroids_ = kmeans_init_res.centroids
else:
raise ValueError("Cluster centers should either be 'k-means++', 'random', 'deterministic' or an array")
return deterministic, centroids_
示例15: _validate_activation_optimization
# 需要导入模块: from sklearn.externals import six [as 别名]
# 或者: from sklearn.externals.six import string_types [as 别名]
def _validate_activation_optimization(activation_function, learning_function):
"""Given the keys for the activation function and the learning function
get the appropriate TF callable. The reason we store and pass around strings
is so the models can be more easily pickled (and don't attempt to pickle a
non-instance method)
Parameters
----------
activation_function : str
The key for the activation function
learning_function : str
The key for the learning function.
Returns
-------
activation : callable
The activation function
learning : callable
The learning function.
"""
if isinstance(activation_function, six.string_types):
activation = PERMITTED_ACTIVATIONS.get(activation_function, None)
if activation is None:
raise ValueError('Permitted activation functions: %r' % list(PERMITTED_ACTIVATIONS.keys()))
else:
raise TypeError('Activation function must be a string')
# validation optimization function:
if isinstance(learning_function, six.string_types):
learning = PERMITTED_OPTIMIZERS.get(learning_function, None)
if learning is None:
raise ValueError('Permitted learning functions: %r' % list(PERMITTED_OPTIMIZERS.keys()))
else:
raise TypeError('Learning function must be a string')
return activation, learning