当前位置: 首页>>代码示例>>Python>>正文


Python moves.xrange方法代码示例

本文整理汇总了Python中sklearn.externals.six.moves.xrange方法的典型用法代码示例。如果您正苦于以下问题:Python moves.xrange方法的具体用法?Python moves.xrange怎么用?Python moves.xrange使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.externals.six.moves的用法示例。


在下文中一共展示了moves.xrange方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _word_ngrams

# 需要导入模块: from sklearn.externals.six import moves [as 别名]
# 或者: from sklearn.externals.six.moves import xrange [as 别名]
def _word_ngrams(self, tokens, stop_words=None):
        """Turn tokens into a sequence of n-grams after stop words filtering"""
        # handle stop words
        if stop_words is not None:
            tokens = [w for w in tokens if w not in stop_words]

        # handle token n-grams
        min_n, max_n = self.ngram_range
        if max_n != 1:
            original_tokens = tokens
            tokens = []
            n_original_tokens = len(original_tokens)
            for n in xrange(min_n,
                            min(max_n + 1, n_original_tokens + 1)):
                for i in xrange(n_original_tokens - n + 1):
                    tokens.append(" ".join(original_tokens[i: i + n]))

        return tokens 
开发者ID:prozhuchen,项目名称:2016CCF-sougou,代码行数:20,代码来源:STFIWF.py

示例2: _char_wb_ngrams

# 需要导入模块: from sklearn.externals.six import moves [as 别名]
# 或者: from sklearn.externals.six.moves import xrange [as 别名]
def _char_wb_ngrams(self, text_document):
        """Whitespace sensitive char-n-gram tokenization.

        Tokenize text_document into a sequence of character n-grams
        excluding any whitespace (operating only inside word boundaries)"""
        # normalize white spaces
        text_document = self._white_spaces.sub(" ", text_document)

        min_n, max_n = self.ngram_range
        ngrams = []
        for w in text_document.split():
            w = ' ' + w + ' '
            w_len = len(w)
            for n in xrange(min_n, max_n + 1):
                offset = 0
                ngrams.append(w[offset:offset + n])
                while offset + n < w_len:
                    offset += 1
                    ngrams.append(w[offset:offset + n])
                if offset == 0:  # count a short word (w_len < n) only once
                    break
        return ngrams 
开发者ID:prozhuchen,项目名称:2016CCF-sougou,代码行数:24,代码来源:STFIWF.py

示例3: update

# 需要导入模块: from sklearn.externals.six import moves [as 别名]
# 或者: from sklearn.externals.six.moves import xrange [as 别名]
def update(self, event, model):
        if event == "examples_loaded":
            for i in xrange(len(model.data)):
                self.update_example(model, i)

        if event == "example_added":
            self.update_example(model, -1)

        if event == "clear":
            self.ax.clear()
            self.ax.set_xticks([])
            self.ax.set_yticks([])
            self.contours = []
            self.c_labels = None
            self.plot_kernels()

        if event == "surface":
            self.remove_surface()
            self.plot_support_vectors(model.clf.support_vectors_)
            self.plot_decision_surface(model.surface, model.surface_type)

        self.canvas.draw() 
开发者ID:jakevdp,项目名称:sklearn_pydata2015,代码行数:24,代码来源:svm_gui.py

示例4: test_int_float_dict

# 需要导入模块: from sklearn.externals.six import moves [as 别名]
# 或者: from sklearn.externals.six.moves import xrange [as 别名]
def test_int_float_dict():
    rng = np.random.RandomState(0)
    keys = np.unique(rng.randint(100, size=10).astype(np.intp))
    values = rng.rand(len(keys))

    d = IntFloatDict(keys, values)
    for key, value in zip(keys, values):
        assert_equal(d[key], value)
    assert_equal(len(d), len(keys))

    d.append(120, 3.)
    assert_equal(d[120], 3.0)
    assert_equal(len(d), len(keys) + 1)
    for i in xrange(2000):
        d.append(i + 1000, 4.0)
    assert_equal(d[1100], 4.0) 
开发者ID:alvarobartt,项目名称:twitter-stock-recommendation,代码行数:18,代码来源:test_fast_dict.py

示例5: _char_ngrams

# 需要导入模块: from sklearn.externals.six import moves [as 别名]
# 或者: from sklearn.externals.six.moves import xrange [as 别名]
def _char_ngrams(self, text_document):
        """Tokenize text_document into a sequence of character n-grams"""
        # normalize white spaces
        text_document = self._white_spaces.sub(" ", text_document)

        text_len = len(text_document)
        ngrams = []
        min_n, max_n = self.ngram_range
        for n in xrange(min_n, min(max_n + 1, text_len + 1)):
            for i in xrange(text_len - n + 1):
                ngrams.append(text_document[i: i + n])
        return ngrams 
开发者ID:prozhuchen,项目名称:2016CCF-sougou,代码行数:14,代码来源:STFIWF.py

示例6: _validate_vocabulary

# 需要导入模块: from sklearn.externals.six import moves [as 别名]
# 或者: from sklearn.externals.six.moves import xrange [as 别名]
def _validate_vocabulary(self):
        vocabulary = self.vocabulary
        if vocabulary is not None:
            if isinstance(vocabulary, set):
                vocabulary = sorted(vocabulary)
            if not isinstance(vocabulary, Mapping):
                vocab = {}
                for i, t in enumerate(vocabulary):
                    if vocab.setdefault(t, i) != i:
                        msg = "Duplicate term in vocabulary: %r" % t
                        raise ValueError(msg)
                vocabulary = vocab
            else:
                indices = set(six.itervalues(vocabulary))
                if len(indices) != len(vocabulary):
                    raise ValueError("Vocabulary contains repeated indices.")
                for i in xrange(len(vocabulary)):
                    if i not in indices:
                        msg = ("Vocabulary of size %d doesn't contain index "
                               "%d." % (len(vocabulary), i))
                        raise ValueError(msg)
            if not vocabulary:
                raise ValueError("empty vocabulary passed to fit")
            self.fixed_vocabulary_ = True
            self.vocabulary_ = dict(vocabulary)
        else:
            self.fixed_vocabulary_ = False 
开发者ID:prozhuchen,项目名称:2016CCF-sougou,代码行数:29,代码来源:STFIWF.py

示例7: l2

# 需要导入模块: from sklearn.externals.six import moves [as 别名]
# 或者: from sklearn.externals.six.moves import xrange [as 别名]
def l2(Ks, dim, X_rhos, Y_rhos, required, clamp=True, to_self=False):
    r'''
    Estimates the L2 distance between distributions, via
        \int (p - q)^2 = \int p^2 - \int p q - \int q p + \int q^2.

    \int pq and \int qp are estimated with the linear function (in both
    directions), while \int p^2 and \int q^2 are estimated via the quadratic
    function below.

    Always clamps negative estimates of l2^2 to 0, because otherwise the sqrt
    would break.
    '''
    n_X = len(X_rhos)
    n_Y = len(Y_rhos)

    linears = required
    assert linears.shape == (1, Ks.size, n_X, n_Y, 2)

    X_quadratics = np.empty((Ks.size, n_X), dtype=np.float32)
    for i, rho in enumerate(X_rhos):
        X_quadratics[:, i] = quadratic(Ks, dim, rho)

    Y_quadratics = np.empty((Ks.size, n_Y), dtype=np.float32)
    for j, rho in enumerate(Y_rhos):
        Y_quadratics[:, j] = quadratic(Ks, dim, rho)

    est = -linears.sum(axis=4)
    est += X_quadratics[None, :, :, None]
    est += Y_quadratics[None, :, None, :]
    np.maximum(est, 0, out=est)
    np.sqrt(est, out=est)

    # diagonal is of course known to be zero
    if to_self:
        est[:, :, xrange(n_X), xrange(n_Y)] = 0
    return est[:, :, :, :, None] 
开发者ID:djsutherland,项目名称:skl-groups,代码行数:38,代码来源:knn.py

示例8: make_stacked

# 需要导入模块: from sklearn.externals.six import moves [as 别名]
# 或者: from sklearn.externals.six.moves import xrange [as 别名]
def make_stacked(self):
        "If unstacked, convert to stacked. If stacked, do nothing."
        if self.stacked:
            return

        self._boundaries = bounds = np.r_[0, np.cumsum(self.n_pts)]
        self.stacked_features = stacked = np.vstack(self.features)
        self.features = np.array(
            [stacked[bounds[i-1]:bounds[i]] for i in xrange(1, len(bounds))],
            dtype=object)
        self.stacked = True

    ############################################################################
    ## Properties to get at basic metadata 
开发者ID:djsutherland,项目名称:skl-groups,代码行数:16,代码来源:features.py

示例9: test_mean

# 需要导入模块: from sklearn.externals.six import moves [as 别名]
# 或者: from sklearn.externals.six.moves import xrange [as 别名]
def test_mean():
    dim = 5
    n_bags = 50
    np.random.seed(42)
    bags = [np.random.randn(np.random.randint(30, 100), dim)
            for _ in xrange(n_bags)]

    meaned = BagMean().fit_transform(bags)
    assert meaned.shape == (n_bags, dim)
    assert np.allclose(meaned[3], np.mean(bags[3], axis=0)) 
开发者ID:djsutherland,项目名称:skl-groups,代码行数:12,代码来源:test_summaries.py

示例10: test_bagofwords_basic

# 需要导入模块: from sklearn.externals.six import moves [as 别名]
# 或者: from sklearn.externals.six.moves import xrange [as 别名]
def test_bagofwords_basic():
    n_codewords = 10
    dim = 5
    kmeans = KMeans(n_clusters=n_codewords, max_iter=100, n_init=3,
                    random_state=47)
    bow = BagOfWords(kmeans)

    np.random.seed(42)
    bags = [np.random.randn(np.random.randint(30, 100), dim)
            for _ in xrange(50)]

    bowed = bow.fit_transform(bags)
    assert bowed.shape == (len(bags), n_codewords)
    assert bow.codewords_.shape == (n_codewords, dim)
    assert np.all(bowed >= 0)
    assert np.all(np.sum(bowed, 1) == [b.shape[0] for b in bags])

    bow.fit(Features(bags))
    bowed2 = bow.transform(bags)
    assert np.all(bowed == bowed2)
    assert bow.codewords_.shape == (n_codewords, dim)

    minikmeans = MiniBatchKMeans(n_clusters=n_codewords, max_iter=100,
                                 random_state=47)
    minibow = BagOfWords(minikmeans)
    assert_raises(AttributeError, lambda: minibow.transform(bags))
    minibowed = minibow.fit_transform(bags)
    assert minibowed.shape == bowed.shape
    assert np.all(bowed >= 0)
    assert np.all(np.sum(bowed, 1) == [b.shape[0] for b in bags]) 
开发者ID:djsutherland,项目名称:skl-groups,代码行数:32,代码来源:test_summaries.py

示例11: test_l2density_basic

# 需要导入模块: from sklearn.externals.six import moves [as 别名]
# 或者: from sklearn.externals.six.moves import xrange [as 别名]
def test_l2density_basic():
    dim = 3
    bags = [np.random.randn(np.random.randint(30, 100), dim)
            for _ in xrange(50)]
    pipe = Pipeline([
        ('scale', BagMinMaxScaler([0, 1])),
        ('density', L2DensityTransformer(15)),
    ])
    l2ed = pipe.fit_transform(bags)

    assert np.all(np.isfinite(l2ed))
    # ||x - y||^2 = <x, x> - 2 <x, y> + <y, y>
    K = l2ed.dot(l2ed.T)
    row_norms_sq = np.diagonal(K)
    l2_dist_sq = row_norms_sq[:, None] - 2 * K + row_norms_sq[None, :]
    assert np.min(row_norms_sq) > 0
    assert np.min(l2_dist_sq) >= 0

    assert_raises(ValueError, lambda: L2DensityTransformer(10, basis='foo'))

    t = L2DensityTransformer(10)
    assert_raises(AttributeError, lambda: t.transform(bags))
    t.fit(dim)
    t.transform(BagMinMaxScaler([0, 1]).fit_transform(bags))
    assert_raises(ValueError, lambda: t.transform([b[:, :2] for b in bags]))
    assert_raises(ValueError, lambda: t.transform(bags))
    t.basis = 'haha snuck my way in'
    assert_raises(ValueError, lambda: t.transform(bags))


################################################################################ 
开发者ID:djsutherland,项目名称:skl-groups,代码行数:33,代码来源:test_summaries.py

示例12: test_pca

# 需要导入模块: from sklearn.externals.six import moves [as 别名]
# 或者: from sklearn.externals.six.moves import xrange [as 别名]
def test_pca():
    bags = [np.random.normal(5, 3, size=(np.random.randint(10, 100), 20))
            for _ in xrange(50)]
    feats = Features(bags, stack=True)

    pca = BagPCA(k=3)
    pca.fit(bags)
    pcaed = pca.transform(bags)
    assert pcaed.dim == 3

    BagPCA(varfrac=.3).fit_transform(bags)

    pca2 = BagPCA(k=20)
    pcaed2 = pca2.fit_transform(bags)
    orig = pca2.inverse_transform(pcaed2)
    orig.make_stacked()
    assert np.allclose(feats.stacked_features, orig.stacked_features)

    assert BagPCA(k=5, randomize=True).fit_transform(bags).dim == 5

    assert_raises(TypeError, lambda: BagPCA(randomize=True))
    assert_raises(TypeError, lambda: BagPCA(mle_components=True, k=12))
    assert BagPCA(mle_components=True)



################################################################################ 
开发者ID:djsutherland,项目名称:skl-groups,代码行数:29,代码来源:test_preprocessing.py

示例13: test_knn_version_consistency

# 需要导入模块: from sklearn.externals.six import moves [as 别名]
# 或者: from sklearn.externals.six.moves import xrange [as 别名]
def test_knn_version_consistency():
    if not have_flann:
        raise SkipTest("No flann, so skipping knn tests.")
    if not have_accel:
        raise SkipTest("No skl-groups-accel, so skipping version consistency.")

    n = 20
    for dim in [1, 7]:
        np.random.seed(47)
        bags = Features([np.random.randn(np.random.randint(30, 100), dim)
                         for _ in xrange(n)])

        div_funcs = ('kl', 'js', 'renyi:.9', 'l2', 'tsallis:.8')
        Ks = (3, 4)
        get_est = partial(KNNDivergenceEstimator, div_funcs=div_funcs, Ks=Ks)
        results = {}
        for version in ('fast', 'slow', 'best'):
            est = get_est(version=version)
            results[version] = res = est.fit_transform(bags)
            assert res.shape == (len(div_funcs), len(Ks), n, n)
            assert np.all(np.isfinite(res))

        for df, fast, slow in zip(div_funcs, results['fast'], results['slow']):
            assert_array_almost_equal(
                fast, slow, decimal=1 if df == 'js' else 5,
                err_msg="({}, dim {})".format(df, dim))
            # TODO: debug JS differences

        est = get_est(version='fast', n_jobs=-1)
        res = est.fit_transform(bags)
        assert np.all(results['fast'] == res)

        est = get_est(version='slow', n_jobs=-1)
        res = est.fit_transform(bags)
        assert np.all(results['slow'] == res) 
开发者ID:djsutherland,项目名称:skl-groups,代码行数:37,代码来源:test_divs_knn.py

示例14: test_knn_sanity_slow

# 需要导入模块: from sklearn.externals.six import moves [as 别名]
# 或者: from sklearn.externals.six.moves import xrange [as 别名]
def test_knn_sanity_slow():
    if not have_flann:
        raise SkipTest("No flann, so skipping knn tests.")

    dim = 3
    n = 20
    np.random.seed(47)
    bags = Features([np.random.randn(np.random.randint(30, 100), dim)
                     for _ in xrange(n)])

    # just make sure it runs
    div_funcs = ('kl', 'js', 'renyi:.9', 'l2', 'tsallis:.8')
    Ks = (3, 4)
    est = KNNDivergenceEstimator(div_funcs=div_funcs, Ks=Ks)
    res = est.fit_transform(bags)
    assert res.shape == (len(div_funcs), len(Ks), n, n)
    assert np.all(np.isfinite(res))

    # test that JS blows up when there's a huge difference in bag sizes
    # (so that K is too low)
    assert_raises(
        ValueError,
        partial(est.fit_transform, bags + [np.random.randn(1000, dim)]))

    # test fit() and then transform() with JS, with different-sized test bags
    est = KNNDivergenceEstimator(div_funcs=('js',), Ks=(5,))
    est.fit(bags, get_rhos=True)
    with LogCapture('skl_groups.divergences.knn', level=logging.WARNING) as l:
        res = est.transform([np.random.randn(300, dim)])
        assert res.shape == (1, 1, 1, len(bags))
        assert len(l.records) == 1
        assert l.records[0].message.startswith('Y_rhos had a lower max_K')

    # test that passing div func more than once raises
    def blah(df):
        est = KNNDivergenceEstimator(div_funcs=[df, df])
        return est.fit(bags)
    assert_raises(ValueError, lambda: blah('kl'))
    assert_raises(ValueError, lambda: blah('renyi:.8'))
    assert_raises(ValueError, lambda: blah('l2')) 
开发者ID:djsutherland,项目名称:skl-groups,代码行数:42,代码来源:test_divs_knn.py

示例15: test_knn_memory

# 需要导入模块: from sklearn.externals.six import moves [as 别名]
# 或者: from sklearn.externals.six.moves import xrange [as 别名]
def test_knn_memory():
    if not have_flann:
        raise SkipTest("No flann, so skipping knn tests.")

    dim = 3
    n = 20
    np.random.seed(47)
    bags = Features([np.random.randn(np.random.randint(30, 100), dim)
                     for _ in xrange(n)])

    tdir = tempfile.mkdtemp()
    div_funcs = ('kl', 'js', 'renyi:.9', 'l2', 'tsallis:.8')
    Ks = (3, 4)
    est = KNNDivergenceEstimator(div_funcs=div_funcs, Ks=Ks, memory=tdir)
    res1 = est.fit_transform(bags)

    with LogCapture('skl_groups.divergences.knn', level=logging.INFO) as l:
        res2 = est.transform(bags)
        assert len(l.records) == 0
    assert np.all(res1 == res2)

    with LogCapture('skl_groups.divergences.knn', level=logging.INFO) as l:
        res3 = est.fit_transform(bags)
        for r in l.records:
            assert not r.message.startswith("Getting divergences")
    assert np.all(res1 == res3) 
开发者ID:djsutherland,项目名称:skl-groups,代码行数:28,代码来源:test_divs_knn.py


注:本文中的sklearn.externals.six.moves.xrange方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。