本文整理汇总了Python中sklearn.externals.six.iteritems方法的典型用法代码示例。如果您正苦于以下问题:Python six.iteritems方法的具体用法?Python six.iteritems怎么用?Python six.iteritems使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sklearn.externals.six
的用法示例。
在下文中一共展示了six.iteritems方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: fit
# 需要导入模块: from sklearn.externals import six [as 别名]
# 或者: from sklearn.externals.six import iteritems [as 别名]
def fit(self, Z, **fit_params):
"""TODO: rewrite docstring
Fit all transformers using X.
Parameters
----------
X : array-like or sparse matrix, shape (n_samples, n_features)
Input data, used to fit transformers.
"""
fit_params_steps = dict((step, {})
for step, _ in self.transformer_list)
for pname, pval in six.iteritems(fit_params):
step, param = pname.split('__', 1)
fit_params_steps[step][param] = pval
transformers = Parallel(n_jobs=self.n_jobs, backend="threading")(
delayed(_fit_one_transformer)(trans, Z, **fit_params_steps[name])
for name, trans in self.transformer_list)
self._update_transformer_list(transformers)
return self
示例2: test_type_of_target
# 需要导入模块: from sklearn.externals import six [as 别名]
# 或者: from sklearn.externals.six import iteritems [as 别名]
def test_type_of_target():
for group, group_examples in iteritems(EXAMPLES):
for example in group_examples:
assert_equal(type_of_target(example), group,
msg=('type_of_target(%r) should be %r, got %r'
% (example, group, type_of_target(example))))
for example in NON_ARRAY_LIKE_EXAMPLES:
msg_regex = 'Expected array-like \(array or non-string sequence\).*'
assert_raises_regex(ValueError, msg_regex, type_of_target, example)
for example in MULTILABEL_SEQUENCES:
msg = ('You appear to be using a legacy multi-label data '
'representation. Sequence of sequences are no longer supported;'
' use a binary array or sparse matrix instead.')
assert_raises_regex(ValueError, msg, type_of_target, example)
try:
from pandas import SparseSeries
except ImportError:
raise SkipTest("Pandas not found")
y = SparseSeries([1, 0, 0, 1, 0])
msg = "y cannot be class 'SparseSeries'."
assert_raises_regex(ValueError, msg, type_of_target, y)
示例3: get_params
# 需要导入模块: from sklearn.externals import six [as 别名]
# 或者: from sklearn.externals.six import iteritems [as 别名]
def get_params(self, deep=True):
""" Get classifier parameter names for GridSearch"""
if not deep:
return super(MajorityVoteClassifier, self).get_params(deep=False)
else:
out = self.named_classifiers.copy()
for name, step in six.iteritems(self.named_classifiers):
for key, value in six.iteritems(step.get_params(deep=True)):
out['%s__%s' % (name, key)] = value
return out
示例4: _clone_h2o_obj
# 需要导入模块: from sklearn.externals import six [as 别名]
# 或者: from sklearn.externals.six import iteritems [as 别名]
def _clone_h2o_obj(estimator, ignore=False, **kwargs):
# do initial clone
est = clone(estimator)
# set kwargs:
if kwargs:
for k, v in six.iteritems(kwargs):
setattr(est, k, v)
# check on h2o estimator
if isinstance(estimator, H2OPipeline):
# the last step from the original estimator
e = estimator.steps[-1][1]
if isinstance(e, H2OEstimator):
last_step = est.steps[-1][1]
# so it's the last step
for k, v in six.iteritems(e._parms):
k, v = _kv_str(k, v)
# if (not k in PARM_IGNORE) and (not v is None):
# e._parms[k] = v
last_step._parms[k] = v
# otherwise it's an BaseH2OFunctionWrapper
return est
示例5: _new_base_estimator
# 需要导入模块: from sklearn.externals import six [as 别名]
# 或者: from sklearn.externals.six import iteritems [as 别名]
def _new_base_estimator(est, clonable_kwargs):
"""When the grid searches are pickled, the estimator
has to be dropped out. When we load it back in, we have
to reinstate a new one, since the fit is predicated on
being able to clone a base estimator, we've got to have
an estimator to clone and fit.
Parameters
----------
est : str
The type of model to build
Returns
-------
estimator : H2OEstimator
The cloned base estimator
"""
est_map = {
'dl': H2ODeepLearningEstimator,
'gbm': H2OGradientBoostingEstimator,
'glm': H2OGeneralizedLinearEstimator,
# 'glrm': H2OGeneralizedLowRankEstimator,
# 'km' : H2OKMeansEstimator,
'nb': H2ONaiveBayesEstimator,
'rf': H2ORandomForestEstimator
}
estimator = est_map[est]() # initialize the new ones
for k, v in six.iteritems(clonable_kwargs):
k, v = _kv_str(k, v)
estimator._parms[k] = v
return estimator
示例6: transform
# 需要导入模块: from sklearn.externals import six [as 别名]
# 或者: from sklearn.externals.six import iteritems [as 别名]
def transform(self, X):
"""Transform a test matrix given the already-fit transformer.
Parameters
----------
X : Pandas ``DataFrame``
The Pandas frame to transform. The operation will
be applied to a copy of the input data, and the result
will be returned.
Returns
-------
X : Pandas ``DataFrame``
The operation is applied to a copy of ``X``,
and the result set is returned.
"""
check_is_fitted(self, 'sq_nms_')
# check on state of X and cols
X, _ = validate_is_pd(X, self.cols)
sq_nms_ = self.sq_nms_
# scale by norms
for nm, the_norm in six.iteritems(sq_nms_):
X[nm] /= the_norm
return X if self.as_df else X.as_matrix()
示例7: _sort_features
# 需要导入模块: from sklearn.externals import six [as 别名]
# 或者: from sklearn.externals.six import iteritems [as 别名]
def _sort_features(self, X, vocabulary):
"""Sort features by name
Returns a reordered matrix and modifies the vocabulary in place
"""
sorted_features = sorted(six.iteritems(vocabulary))
map_index = np.empty(len(sorted_features), dtype=np.int32)
for new_val, (term, old_val) in enumerate(sorted_features):
vocabulary[term] = new_val
map_index[old_val] = new_val
X.indices = map_index.take(X.indices, mode='clip')
return X
示例8: _limit_features
# 需要导入模块: from sklearn.externals import six [as 别名]
# 或者: from sklearn.externals.six import iteritems [as 别名]
def _limit_features(self, X, vocabulary, high=None, low=None,
limit=None):
"""Remove too rare or too common features.
Prune features that are non zero in more samples than high or less
documents than low, modifying the vocabulary, and restricting it to
at most the limit most frequent.
This does not prune samples with zero features.
"""
if high is None and low is None and limit is None:
return X, set()
# Calculate a mask based on document frequencies
dfs = _document_frequency(X)
tfs = np.asarray(X.sum(axis=0)).ravel()
mask = np.ones(len(dfs), dtype=bool)
if high is not None:
mask &= dfs <= high
if low is not None:
mask &= dfs >= low
if limit is not None and mask.sum() > limit:
mask_inds = (-tfs[mask]).argsort()[:limit]
new_mask = np.zeros(len(dfs), dtype=bool)
new_mask[np.where(mask)[0][mask_inds]] = True
mask = new_mask
new_indices = np.cumsum(mask) - 1 # maps old indices to new
removed_terms = set()
for term, old_index in list(six.iteritems(vocabulary)):
if mask[old_index]:
vocabulary[term] = new_indices[old_index]
else:
del vocabulary[term]
removed_terms.add(term)
kept_indices = np.where(mask)[0]
if len(kept_indices) == 0:
raise ValueError("After pruning, no terms remain. Try a lower"
" min_df or a higher max_df.")
return X[:, kept_indices], removed_terms
示例9: get_feature_names
# 需要导入模块: from sklearn.externals import six [as 别名]
# 或者: from sklearn.externals.six import iteritems [as 别名]
def get_feature_names(self):
"""Array mapping from feature integer indices to feature name"""
self._check_vocabulary()
return [t for t, i in sorted(six.iteritems(self.vocabulary_),
key=itemgetter(1))]
示例10: topological_sort
# 需要导入模块: from sklearn.externals import six [as 别名]
# 或者: from sklearn.externals.six import iteritems [as 别名]
def topological_sort(deps):
'''
Topologically sort a DAG, represented by a dict of child => set of parents.
The dependency dict is destroyed during operation.
Uses the Kahn algorithm: http://en.wikipedia.org/wiki/Topological_sorting
Not a particularly good implementation, but we're just running it on tiny
graphs.
'''
order = []
available = set()
def _move_available():
to_delete = []
for n, parents in iteritems(deps):
if not parents:
available.add(n)
to_delete.append(n)
for n in to_delete:
del deps[n]
_move_available()
while available:
n = available.pop()
order.append(n)
for parents in itervalues(deps):
parents.discard(n)
_move_available()
if available:
raise ValueError("dependency cycle found")
return order
示例11: _set_up_funcs
# 需要导入模块: from sklearn.externals import six [as 别名]
# 或者: from sklearn.externals.six import iteritems [as 别名]
def _set_up_funcs(funcs, metas_ordered, Ks, dim, X_ns=None, Y_ns=None):
# replace functions with partials of args
def replace_func(func, info):
needs_alpha = getattr(func, 'needs_alpha', False)
new = None
args = (Ks, dim)
if needs_alpha:
args = (info.alphas,) + args
if hasattr(func, 'chooser_fn'):
args += (X_ns, Y_ns)
if (getattr(func, 'needs_all_ks', False) and
getattr(func.chooser_fn, 'returns_ks', False)):
new, K = func.chooser_fn(*args)
new.K_needed = K
else:
new = func.chooser_fn(*args)
else:
new = partial(func, *args)
for attr in dir(func):
if not (attr.startswith('__') or attr.startswith('func_')):
setattr(new, attr, getattr(func, attr))
return new
rep_funcs = dict(
(replace_func(f, info), info) for f, info in iteritems(funcs))
rep_metas_ordered = OrderedDict(
(replace_func(f, info), info) for f, info in iteritems(metas_ordered))
return rep_funcs, rep_metas_ordered
示例12: __getitem__
# 需要导入模块: from sklearn.externals import six [as 别名]
# 或者: from sklearn.externals.six import iteritems [as 别名]
def __getitem__(self, key):
if (isinstance(key, string_types) or
(isinstance(key, (tuple, list)) and
any(isinstance(x, string_types) for x in key))):
msg = "Features indexing only subsets rows, but got {!r}"
raise TypeError(msg.format(key))
if np.isscalar(key):
return self.features[key]
else:
return type(self)(self.features[key], copy=False, stack=False,
**{k: v[key] for k, v in iteritems(self.meta)})
示例13: test_type_utils
# 需要导入模块: from sklearn.externals import six [as 别名]
# 或者: from sklearn.externals.six import iteritems [as 别名]
def test_type_utils():
tests = {
'bool': (np.array([False, True]), False, True),
'int32': (np.arange(10, dtype=np.int32), True, True),
'int64': (np.arange(10, dtype=np.int64), True, True),
'float32': (np.arange(10, dtype=np.float32), False, False),
'float64': (np.arange(10, dtype=np.float64), False, False),
}
for name, (a, is_int, is_cat) in iteritems(tests):
assert utils.is_integer_type(a) == is_int, name
assert utils.is_categorical_type(a) == is_cat, name
assert utils.is_integer(a[0]) == is_int, name
assert utils.is_categorical(a[0]) == is_cat, name
assert utils.is_integer_type(utils.as_integer_type(tests['float32'][0]))
assert utils.is_integer_type(utils.as_integer_type(tests['float64'][0]))
assert_raises(
ValueError, lambda: utils.as_integer_type(tests['float32'][0] + .2))
assert utils.is_integer(5)
assert utils.is_categorical(False)
assert utils.is_categorical(True)
################################################################################
示例14: _pre_transform
# 需要导入模块: from sklearn.externals import six [as 别名]
# 或者: from sklearn.externals.six import iteritems [as 别名]
def _pre_transform(self, Z, **fit_params):
fit_params_steps = dict((step, {}) for step, _ in self.steps)
for pname, pval in six.iteritems(fit_params):
step, param = pname.split('__', 1)
fit_params_steps[step][param] = pval
Zp = Z.persist()
for name, transform in self.steps[:-1]:
if hasattr(transform, "fit_transform"):
Zt = transform.fit_transform(Zp, **fit_params_steps[name])
else:
Zt = transform.fit(Zp, **fit_params_steps[name]) \
.transform(Zp)
Zp.unpersist()
Zp = Zt.persist()
return Zp, fit_params_steps[self.steps[-1][0]]
示例15: get_params
# 需要导入模块: from sklearn.externals import six [as 别名]
# 或者: from sklearn.externals.six import iteritems [as 别名]
def get_params(self, deep=True):
if not deep:
return super(SparkPipeline, self).get_params(deep=False)
else:
out = self.named_steps.copy()
for name, step in six.iteritems(self.named_steps):
for key, value in six.iteritems(step.get_params(deep=True)):
out['%s__%s' % (name, key)] = value
out.update(super(SparkPipeline, self).get_params(deep=False))
return out