当前位置: 首页>>代码示例>>Python>>正文


Python datasets.make_hastie_10_2方法代码示例

本文整理汇总了Python中sklearn.datasets.make_hastie_10_2方法的典型用法代码示例。如果您正苦于以下问题:Python datasets.make_hastie_10_2方法的具体用法?Python datasets.make_hastie_10_2怎么用?Python datasets.make_hastie_10_2使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.datasets的用法示例。


在下文中一共展示了datasets.make_hastie_10_2方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_warm_start

# 需要导入模块: from sklearn import datasets [as 别名]
# 或者: from sklearn.datasets import make_hastie_10_2 [as 别名]
def test_warm_start(random_state=42):
    # Test if fitting incrementally with warm start gives a forest of the
    # right size and the same results as a normal fit.
    X, y = make_hastie_10_2(n_samples=20, random_state=1)

    clf_ws = None
    for n_estimators in [5, 10]:
        if clf_ws is None:
            clf_ws = BaggingClassifier(n_estimators=n_estimators,
                                       random_state=random_state,
                                       warm_start=True)
        else:
            clf_ws.set_params(n_estimators=n_estimators)
        clf_ws.fit(X, y)
        assert_equal(len(clf_ws), n_estimators)

    clf_no_ws = BaggingClassifier(n_estimators=10, random_state=random_state,
                                  warm_start=False)
    clf_no_ws.fit(X, y)

    assert_equal(set([tree.random_state for tree in clf_ws]),
                 set([tree.random_state for tree in clf_no_ws])) 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:24,代码来源:test_bagging.py

示例2: test_warm_start_equal_n_estimators

# 需要导入模块: from sklearn import datasets [as 别名]
# 或者: from sklearn.datasets import make_hastie_10_2 [as 别名]
def test_warm_start_equal_n_estimators():
    # Test that nothing happens when fitting without increasing n_estimators
    X, y = make_hastie_10_2(n_samples=20, random_state=1)
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=43)

    clf = BaggingClassifier(n_estimators=5, warm_start=True, random_state=83)
    clf.fit(X_train, y_train)

    y_pred = clf.predict(X_test)
    # modify X to nonsense values, this should not change anything
    X_train += 1.

    assert_warns_message(UserWarning,
                         "Warm-start fitting without increasing n_estimators does not",
                         clf.fit, X_train, y_train)
    assert_array_equal(y_pred, clf.predict(X_test)) 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:18,代码来源:test_bagging.py

示例3: test_warm_start_equivalence

# 需要导入模块: from sklearn import datasets [as 别名]
# 或者: from sklearn.datasets import make_hastie_10_2 [as 别名]
def test_warm_start_equivalence():
    # warm started classifier with 5+5 estimators should be equivalent to
    # one classifier with 10 estimators
    X, y = make_hastie_10_2(n_samples=20, random_state=1)
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=43)

    clf_ws = BaggingClassifier(n_estimators=5, warm_start=True,
                               random_state=3141)
    clf_ws.fit(X_train, y_train)
    clf_ws.set_params(n_estimators=10)
    clf_ws.fit(X_train, y_train)
    y1 = clf_ws.predict(X_test)

    clf = BaggingClassifier(n_estimators=10, warm_start=False,
                            random_state=3141)
    clf.fit(X_train, y_train)
    y2 = clf.predict(X_test)

    assert_array_almost_equal(y1, y2) 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:21,代码来源:test_bagging.py

示例4: check_classification_synthetic

# 需要导入模块: from sklearn import datasets [as 别名]
# 或者: from sklearn.datasets import make_hastie_10_2 [as 别名]
def check_classification_synthetic(presort, loss):
    # Test GradientBoostingClassifier on synthetic dataset used by
    # Hastie et al. in ESLII Example 12.7.
    X, y = datasets.make_hastie_10_2(n_samples=12000, random_state=1)

    X_train, X_test = X[:2000], X[2000:]
    y_train, y_test = y[:2000], y[2000:]

    gbrt = GradientBoostingClassifier(n_estimators=100, min_samples_split=2,
                                      max_depth=1, loss=loss,
                                      learning_rate=1.0, random_state=0)
    gbrt.fit(X_train, y_train)
    error_rate = (1.0 - gbrt.score(X_test, y_test))
    assert_less(error_rate, 0.09)

    gbrt = GradientBoostingClassifier(n_estimators=200, min_samples_split=2,
                                      max_depth=1, loss=loss,
                                      learning_rate=1.0, subsample=0.5,
                                      random_state=0,
                                      presort=presort)
    gbrt.fit(X_train, y_train)
    error_rate = (1.0 - gbrt.score(X_test, y_test))
    assert_less(error_rate, 0.08) 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:25,代码来源:test_gradient_boosting.py

示例5: test_check_inputs_predict_stages

# 需要导入模块: from sklearn import datasets [as 别名]
# 或者: from sklearn.datasets import make_hastie_10_2 [as 别名]
def test_check_inputs_predict_stages():
    # check that predict_stages through an error if the type of X is not
    # supported
    x, y = datasets.make_hastie_10_2(n_samples=100, random_state=1)
    x_sparse_csc = csc_matrix(x)
    clf = GradientBoostingClassifier(n_estimators=100, random_state=1)
    clf.fit(x, y)
    score = np.zeros((y.shape)).reshape(-1, 1)
    assert_raise_message(ValueError,
                         "When X is a sparse matrix, a CSR format is expected",
                         predict_stages, clf.estimators_, x_sparse_csc,
                         clf.learning_rate, score)
    x_fortran = np.asfortranarray(x)
    assert_raise_message(ValueError,
                         "X should be C-ordered np.ndarray",
                         predict_stages, clf.estimators_, x_fortran,
                         clf.learning_rate, score) 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:19,代码来源:test_gradient_boosting.py

示例6: test_warm_start

# 需要导入模块: from sklearn import datasets [as 别名]
# 或者: from sklearn.datasets import make_hastie_10_2 [as 别名]
def test_warm_start(Cls):
    # Test if warm start equals fit.
    X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1)
    est = Cls(n_estimators=200, max_depth=1)
    est.fit(X, y)

    est_ws = Cls(n_estimators=100, max_depth=1, warm_start=True)
    est_ws.fit(X, y)
    est_ws.set_params(n_estimators=200)
    est_ws.fit(X, y)

    if Cls is GradientBoostingRegressor:
        assert_array_almost_equal(est_ws.predict(X), est.predict(X))
    else:
        # Random state is preserved and hence predict_proba must also be
        # same
        assert_array_equal(est_ws.predict(X), est.predict(X))
        assert_array_almost_equal(est_ws.predict_proba(X),
                                  est.predict_proba(X)) 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:21,代码来源:test_gradient_boosting.py

示例7: test_warm_start_fortran

# 需要导入模块: from sklearn import datasets [as 别名]
# 或者: from sklearn.datasets import make_hastie_10_2 [as 别名]
def test_warm_start_fortran(Cls):
    # Test that feeding a X in Fortran-ordered is giving the same results as
    # in C-ordered
    X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1)
    est_c = Cls(n_estimators=1, random_state=1, warm_start=True)
    est_fortran = Cls(n_estimators=1, random_state=1, warm_start=True)

    est_c.fit(X, y)
    est_c.set_params(n_estimators=11)
    est_c.fit(X, y)

    X_fortran = np.asfortranarray(X)
    est_fortran.fit(X_fortran, y)
    est_fortran.set_params(n_estimators=11)
    est_fortran.fit(X_fortran, y)

    assert_array_almost_equal(est_c.predict(X), est_fortran.predict(X)) 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:19,代码来源:test_gradient_boosting.py

示例8: test_warm_start_oob

# 需要导入模块: from sklearn import datasets [as 别名]
# 或者: from sklearn.datasets import make_hastie_10_2 [as 别名]
def test_warm_start_oob():
    # Test if warm start OOB equals fit.
    X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1)
    for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]:
        est = Cls(n_estimators=200, max_depth=1, subsample=0.5,
                  random_state=1)
        est.fit(X, y)

        est_ws = Cls(n_estimators=100, max_depth=1, subsample=0.5,
                     random_state=1, warm_start=True)
        est_ws.fit(X, y)
        est_ws.set_params(n_estimators=200)
        est_ws.fit(X, y)

        assert_array_almost_equal(est_ws.oob_improvement_[:100],
                                  est.oob_improvement_[:100]) 
开发者ID:alvarobartt,项目名称:twitter-stock-recommendation,代码行数:18,代码来源:test_gradient_boosting.py

示例9: test_warm_start_smaller_n_estimators

# 需要导入模块: from sklearn import datasets [as 别名]
# 或者: from sklearn.datasets import make_hastie_10_2 [as 别名]
def test_warm_start_smaller_n_estimators():
    # Test if warm start'ed second fit with smaller n_estimators raises error.
    X, y = make_hastie_10_2(n_samples=20, random_state=1)
    clf = BaggingClassifier(n_estimators=5, warm_start=True)
    clf.fit(X, y)
    clf.set_params(n_estimators=4)
    assert_raises(ValueError, clf.fit, X, y) 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:9,代码来源:test_bagging.py

示例10: test_warm_start_with_oob_score_fails

# 需要导入模块: from sklearn import datasets [as 别名]
# 或者: from sklearn.datasets import make_hastie_10_2 [as 别名]
def test_warm_start_with_oob_score_fails():
    # Check using oob_score and warm_start simultaneously fails
    X, y = make_hastie_10_2(n_samples=20, random_state=1)
    clf = BaggingClassifier(n_estimators=5, warm_start=True, oob_score=True)
    assert_raises(ValueError, clf.fit, X, y) 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:7,代码来源:test_bagging.py

示例11: test_oob_score_consistency

# 需要导入模块: from sklearn import datasets [as 别名]
# 或者: from sklearn.datasets import make_hastie_10_2 [as 别名]
def test_oob_score_consistency():
    # Make sure OOB scores are identical when random_state, estimator, and
    # training data are fixed and fitting is done twice
    X, y = make_hastie_10_2(n_samples=200, random_state=1)
    bagging = BaggingClassifier(KNeighborsClassifier(), max_samples=0.5,
                                max_features=0.5, oob_score=True,
                                random_state=1)
    assert_equal(bagging.fit(X, y).oob_score_, bagging.fit(X, y).oob_score_) 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:10,代码来源:test_bagging.py

示例12: test_estimators_samples

# 需要导入模块: from sklearn import datasets [as 别名]
# 或者: from sklearn.datasets import make_hastie_10_2 [as 别名]
def test_estimators_samples():
    # Check that format of estimators_samples_ is correct and that results
    # generated at fit time can be identically reproduced at a later time
    # using data saved in object attributes.
    X, y = make_hastie_10_2(n_samples=200, random_state=1)
    bagging = BaggingClassifier(LogisticRegression(), max_samples=0.5,
                                max_features=0.5, random_state=1,
                                bootstrap=False)
    bagging.fit(X, y)

    # Get relevant attributes
    estimators_samples = bagging.estimators_samples_
    estimators_features = bagging.estimators_features_
    estimators = bagging.estimators_

    # Test for correct formatting
    assert_equal(len(estimators_samples), len(estimators))
    assert_equal(len(estimators_samples[0]), len(X) // 2)
    assert_equal(estimators_samples[0].dtype.kind, 'i')

    # Re-fit single estimator to test for consistent sampling
    estimator_index = 0
    estimator_samples = estimators_samples[estimator_index]
    estimator_features = estimators_features[estimator_index]
    estimator = estimators[estimator_index]

    X_train = (X[estimator_samples])[:, estimator_features]
    y_train = y[estimator_samples]

    orig_coefs = estimator.coef_
    estimator.fit(X_train, y_train)
    new_coefs = estimator.coef_

    assert_array_almost_equal(orig_coefs, new_coefs) 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:36,代码来源:test_bagging.py

示例13: test_max_samples_consistency

# 需要导入模块: from sklearn import datasets [as 别名]
# 或者: from sklearn.datasets import make_hastie_10_2 [as 别名]
def test_max_samples_consistency():
    # Make sure validated max_samples and original max_samples are identical
    # when valid integer max_samples supplied by user
    max_samples = 100
    X, y = make_hastie_10_2(n_samples=2*max_samples, random_state=1)
    bagging = BaggingClassifier(KNeighborsClassifier(),
                                max_samples=max_samples,
                                max_features=0.5, random_state=1)
    bagging.fit(X, y)
    assert_equal(bagging._max_samples, max_samples) 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:12,代码来源:test_bagging.py

示例14: test_max_feature_auto

# 需要导入模块: from sklearn import datasets [as 别名]
# 或者: from sklearn.datasets import make_hastie_10_2 [as 别名]
def test_max_feature_auto():
    # Test if max features is set properly for floats and str.
    X, y = datasets.make_hastie_10_2(n_samples=12000, random_state=1)
    _, n_features = X.shape

    X_train = X[:2000]
    y_train = y[:2000]

    gbrt = GradientBoostingClassifier(n_estimators=1, max_features='auto')
    gbrt.fit(X_train, y_train)
    assert_equal(gbrt.max_features_, int(np.sqrt(n_features)))

    gbrt = GradientBoostingRegressor(n_estimators=1, max_features='auto')
    gbrt.fit(X_train, y_train)
    assert_equal(gbrt.max_features_, n_features)

    gbrt = GradientBoostingRegressor(n_estimators=1, max_features=0.3)
    gbrt.fit(X_train, y_train)
    assert_equal(gbrt.max_features_, int(n_features * 0.3))

    gbrt = GradientBoostingRegressor(n_estimators=1, max_features='sqrt')
    gbrt.fit(X_train, y_train)
    assert_equal(gbrt.max_features_, int(np.sqrt(n_features)))

    gbrt = GradientBoostingRegressor(n_estimators=1, max_features='log2')
    gbrt.fit(X_train, y_train)
    assert_equal(gbrt.max_features_, int(np.log2(n_features)))

    gbrt = GradientBoostingRegressor(n_estimators=1,
                                     max_features=0.01 / X.shape[1])
    gbrt.fit(X_train, y_train)
    assert_equal(gbrt.max_features_, 1) 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:34,代码来源:test_gradient_boosting.py

示例15: test_staged_predict_proba

# 需要导入模块: from sklearn import datasets [as 别名]
# 或者: from sklearn.datasets import make_hastie_10_2 [as 别名]
def test_staged_predict_proba():
    # Test whether staged predict proba eventually gives
    # the same prediction.
    X, y = datasets.make_hastie_10_2(n_samples=1200,
                                     random_state=1)
    X_train, y_train = X[:200], y[:200]
    X_test, y_test = X[200:], y[200:]
    clf = GradientBoostingClassifier(n_estimators=20)
    # test raise NotFittedError if not fitted
    assert_raises(NotFittedError, lambda X: np.fromiter(
        clf.staged_predict_proba(X), dtype=np.float64), X_test)

    clf.fit(X_train, y_train)

    # test if prediction for last stage equals ``predict``
    for y_pred in clf.staged_predict(X_test):
        assert_equal(y_test.shape, y_pred.shape)

    assert_array_equal(clf.predict(X_test), y_pred)

    # test if prediction for last stage equals ``predict_proba``
    for staged_proba in clf.staged_predict_proba(X_test):
        assert_equal(y_test.shape[0], staged_proba.shape[0])
        assert_equal(2, staged_proba.shape[1])

    assert_array_almost_equal(clf.predict_proba(X_test), staged_proba) 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:28,代码来源:test_gradient_boosting.py


注:本文中的sklearn.datasets.make_hastie_10_2方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。