本文整理汇总了Python中sklearn.datasets.load_digits方法的典型用法代码示例。如果您正苦于以下问题:Python datasets.load_digits方法的具体用法?Python datasets.load_digits怎么用?Python datasets.load_digits使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sklearn.datasets
的用法示例。
在下文中一共展示了datasets.load_digits方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: split_train_test
# 需要导入模块: from sklearn import datasets [as 别名]
# 或者: from sklearn.datasets import load_digits [as 别名]
def split_train_test(n_classes):
from sklearn.datasets import load_digits
n_labeled = 5
digits = load_digits(n_class=n_classes) # consider binary case
X = digits.data
y = digits.target
print(np.shape(X))
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33)
while len(np.unique(y_train[:n_labeled])) < n_classes:
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.33)
trn_ds = Dataset(X_train, np.concatenate(
[y_train[:n_labeled], [None] * (len(y_train) - n_labeled)]))
tst_ds = Dataset(X_test, y_test)
return trn_ds, tst_ds, digits
示例2: test_pca_score_with_different_solvers
# 需要导入模块: from sklearn import datasets [as 别名]
# 或者: from sklearn.datasets import load_digits [as 别名]
def test_pca_score_with_different_solvers(self):
digits = datasets.load_digits()
X_digits = mt.tensor(digits.data)
pca_dict = {svd_solver: PCA(n_components=30, svd_solver=svd_solver,
random_state=0)
for svd_solver in self.solver_list}
for pca in pca_dict.values():
pca.fit(X_digits)
# Sanity check for the noise_variance_. For more details see
# https://github.com/scikit-learn/scikit-learn/issues/7568
# https://github.com/scikit-learn/scikit-learn/issues/8541
# https://github.com/scikit-learn/scikit-learn/issues/8544
assert mt.all((pca.explained_variance_ - pca.noise_variance_) >= 0).to_numpy()
# Compare scores with different svd_solvers
score_dict = {svd_solver: pca.score(X_digits).to_numpy()
for svd_solver, pca in pca_dict.items()}
assert_almost_equal(score_dict['full'], score_dict['randomized'],
decimal=3)
示例3: get_mnist_data
# 需要导入模块: from sklearn import datasets [as 别名]
# 或者: from sklearn.datasets import load_digits [as 别名]
def get_mnist_data():
"""Loads the MNIST data set into memory.
Returns
-------
X : array-like, shape=[n_samples, n_features]
Training data for the MNIST data set.
y : array-like, shape=[n_samples,]
Labels for the MNIST data set.
"""
digits = load_digits()
X, y = digits.data, digits.target
y = LabelBinarizer().fit_transform(y)
return X, y
示例4: _get_mnist_data
# 需要导入模块: from sklearn import datasets [as 别名]
# 或者: from sklearn.datasets import load_digits [as 别名]
def _get_mnist_data(seed=None):
digits = load_digits()["images"]
if seed is not None:
rnd = np.random.RandomState(seed=seed)
else:
rnd = np.random.RandomState()
no_img, rows, cols = digits.shape
X = digits.reshape((no_img, rows * cols))
X = np.ascontiguousarray(X)
rnd.shuffle(X)
X_test = X[:100]
X_train = X[100:]
return X_train, X_test
示例5: digits_reduced
# 需要导入模块: from sklearn import datasets [as 别名]
# 或者: from sklearn.datasets import load_digits [as 别名]
def digits_reduced():
data=load_digits()
XX = data['data']
y = data['target']
nn,dd = XX.shape
XX = XX.reshape([nn,8,8])
X = np.empty([nn,3])
for i in xrange(nn):
X[i,0] = simetria_hor(XX[i,:,:])
X[i,1] = simetria_ver(XX[i,:,:])
X[i,2] = np.mean(XX[i,:])
return X,y
### ARFF dataframes ###
示例6: test_pca_default_int_randomised
# 需要导入模块: from sklearn import datasets [as 别名]
# 或者: from sklearn.datasets import load_digits [as 别名]
def test_pca_default_int_randomised(self):
data = load_digits()
X_train, X_test, *_ = train_test_split(
data.data, data.target, test_size=0.2, random_state=42)
model = PCA(random_state=42, svd_solver='randomized',
iterated_power=3).fit(X_train)
model_onnx = convert_sklearn(
model,
initial_types=[("input",
Int64TensorType([None, X_test.shape[1]]))],
)
self.assertTrue(model_onnx is not None)
dump_data_and_model(
X_test.astype(np.int64),
model,
model_onnx,
basename="SklearnPCADefaultIntRandomised",
allow_failure="StrictVersion("
"onnxruntime.__version__)"
"<= StrictVersion('0.2.1')",
)
示例7: test_dummy_identity
# 需要导入模块: from sklearn import datasets [as 别名]
# 或者: from sklearn.datasets import load_digits [as 别名]
def test_dummy_identity(self):
digits = datasets.load_digits(n_class=6)
Xd = digits.data[:20]
yd = digits.target[:20]
n_samples, n_features = Xd.shape
idtr = make_pipeline(IdentityTransformer(), identity())
idtr.fit(Xd, yd)
update_registered_converter(IdentityTransformer, "IdentityTransformer",
dummy_shape_calculator, dummy_converter)
update_registered_converter(identity, "identity",
dummy_shape_calculator, dummy_converter)
model_onnx = convert_sklearn(
idtr,
"idtr",
[("input", FloatTensorType([None, Xd.shape[1]]))],
target_opset=TARGET_OPSET)
idnode = [node for node in model_onnx.graph.node
if node.op_type == "Identity"]
assert len(idnode) == 2
示例8: test_kmeans_clustering_int
# 需要导入模块: from sklearn import datasets [as 别名]
# 或者: from sklearn.datasets import load_digits [as 别名]
def test_kmeans_clustering_int(self):
data = load_digits()
X = data.data
model = KMeans(n_clusters=4)
model.fit(X)
model_onnx = convert_sklearn(model, "kmeans",
[("input", Int64TensorType([None,
X.shape[1]]))],
target_opset=TARGET_OPSET)
self.assertIsNotNone(model_onnx)
dump_data_and_model(
X.astype(numpy.int64)[40:60],
model,
model_onnx,
basename="SklearnKMeansInt-Dec4",
# Operator gemm is not implemented in onnxruntime
allow_failure="StrictVersion(onnx.__version__)"
" < StrictVersion('1.2') or "
"StrictVersion(onnxruntime.__version__) "
"<= StrictVersion('0.2.1')",
)
示例9: test_batchkmeans_clustering_int
# 需要导入模块: from sklearn import datasets [as 别名]
# 或者: from sklearn.datasets import load_digits [as 别名]
def test_batchkmeans_clustering_int(self):
data = load_digits()
X = data.data
model = MiniBatchKMeans(n_clusters=4)
model.fit(X)
model_onnx = convert_sklearn(model, "kmeans",
[("input", Int64TensorType([None,
X.shape[1]]))],
target_opset=TARGET_OPSET)
self.assertIsNotNone(model_onnx)
dump_data_and_model(
X.astype(numpy.int64)[40:60],
model,
model_onnx,
basename="SklearnBatchKMeansInt-Dec4",
allow_failure="StrictVersion(onnx.__version__)"
" < StrictVersion('1.2') or "
"StrictVersion(onnxruntime.__version__) "
"<= StrictVersion('0.2.1')",
)
示例10: test_model_calibrated_classifier_cv_int
# 需要导入模块: from sklearn import datasets [as 别名]
# 或者: from sklearn.datasets import load_digits [as 别名]
def test_model_calibrated_classifier_cv_int(self):
data = load_digits()
X, y = data.data, data.target
clf = MultinomialNB().fit(X, y)
model = CalibratedClassifierCV(clf, cv=2, method="sigmoid").fit(X, y)
model_onnx = convert_sklearn(
model,
"scikit-learn CalibratedClassifierCVMNB",
[("input", Int64TensorType([None, X.shape[1]]))],
target_opset=TARGET_OPSET
)
self.assertTrue(model_onnx is not None)
dump_data_and_model(
X.astype(np.int64),
model,
model_onnx,
basename="SklearnCalibratedClassifierCVInt-Dec4",
allow_failure="StrictVersion(onnxruntime.__version__)"
"<= StrictVersion('0.2.1')",
)
示例11: test_feature_union_transformer_weights_1
# 需要导入模块: from sklearn import datasets [as 别名]
# 或者: from sklearn.datasets import load_digits [as 别名]
def test_feature_union_transformer_weights_1(self):
data = load_digits()
X, y = data.data, data.target
X = X.astype(np.int64)
X_train, X_test, *_ = train_test_split(X, y, test_size=0.5,
random_state=42)
model = FeatureUnion([('pca', PCA()),
('svd', TruncatedSVD())],
transformer_weights={'pca': 10, 'svd': 3}
).fit(X_train)
model_onnx = convert_sklearn(
model, 'feature union',
[('input', Int64TensorType([None, X_test.shape[1]]))])
self.assertTrue(model_onnx is not None)
dump_data_and_model(
X_test,
model,
model_onnx,
basename="SklearnFeatureUnionTransformerWeights1-Dec4",
allow_failure="StrictVersion("
"onnxruntime.__version__)"
"<= StrictVersion('0.2.1')",
)
示例12: test_feature_union_transformer_weights_2
# 需要导入模块: from sklearn import datasets [as 别名]
# 或者: from sklearn.datasets import load_digits [as 别名]
def test_feature_union_transformer_weights_2(self):
data = load_digits()
X, y = data.data, data.target
X = X.astype(np.float32)
X_train, X_test, *_ = train_test_split(X, y, test_size=0.5,
random_state=42)
model = FeatureUnion([('pca', PCA()),
('svd', TruncatedSVD())],
transformer_weights={'pca1': 10, 'svd2': 3}
).fit(X_train)
model_onnx = convert_sklearn(
model, 'feature union',
[('input', FloatTensorType([None, X_test.shape[1]]))])
self.assertTrue(model_onnx is not None)
dump_data_and_model(
X_test,
model,
model_onnx,
basename="SklearnFeatureUnionTransformerWeights2-Dec4",
allow_failure="StrictVersion("
"onnxruntime.__version__)"
"<= StrictVersion('0.2.1')",
)
示例13: setup_method
# 需要导入模块: from sklearn import datasets [as 别名]
# 或者: from sklearn.datasets import load_digits [as 别名]
def setup_method(self):
import sklearn.svm as svm
digits = datasets.load_digits()
self.data = digits.data
self.target = digits.target
self.df = pdml.ModelFrame(digits)
estimator1 = self.df.svm.LinearSVC(C=1.0, random_state=self.random_state)
self.df.fit(estimator1)
estimator2 = svm.LinearSVC(C=1.0, random_state=self.random_state)
estimator2.fit(self.data, self.target)
self.pred = estimator2.predict(self.data)
self.decision = estimator2.decision_function(self.data)
# argument for classification reports
self.labels = np.array([9, 8, 7, 6, 5, 4, 3, 2, 1, 0])
示例14: test_train_test_split
# 需要导入模块: from sklearn import datasets [as 别名]
# 或者: from sklearn.datasets import load_digits [as 别名]
def test_train_test_split(self):
df = pdml.ModelFrame(datasets.load_digits())
self.assertIsInstance(df, pdml.ModelFrame)
train_df, test_df = df.model_selection.train_test_split()
tm.assert_index_equal(df.columns, train_df.columns)
tm.assert_index_equal(df.columns, test_df.columns)
self.assertEqual(len(df), len(train_df) + len(test_df))
self.assertEqual(df.shape[1], train_df.shape[1])
self.assertEqual(df.shape[1], test_df.shape[1])
tm.assert_index_equal(df.columns, train_df.columns)
tm.assert_index_equal(df.columns, test_df.columns)
df = pdml.ModelFrame(datasets.load_digits())
df.target_name = 'xxx'
train_df, test_df = df.model_selection.train_test_split()
tm.assert_index_equal(df.columns, train_df.columns)
tm.assert_index_equal(df.columns, test_df.columns)
self.assertEqual(train_df.target_name, 'xxx')
self.assertEqual(test_df.target_name, 'xxx')
示例15: test_validation_curve
# 需要导入模块: from sklearn import datasets [as 别名]
# 或者: from sklearn.datasets import load_digits [as 别名]
def test_validation_curve(self):
digits = datasets.load_digits()
df = pdml.ModelFrame(digits)
param_range = np.logspace(-2, -1, 2)
svc = df.svm.SVC(random_state=self.random_state)
result = df.model_selection.validation_curve(svc, 'gamma',
param_range)
expected = ms.validation_curve(svm.SVC(random_state=self.random_state),
digits.data, digits.target,
'gamma', param_range)
self.assertEqual(len(result), 2)
self.assert_numpy_array_almost_equal(result[0], expected[0])
self.assert_numpy_array_almost_equal(result[1], expected[1])