当前位置: 首页>>代码示例>>Python>>正文


Python sklearn.datasets方法代码示例

本文整理汇总了Python中sklearn.datasets方法的典型用法代码示例。如果您正苦于以下问题:Python sklearn.datasets方法的具体用法?Python sklearn.datasets怎么用?Python sklearn.datasets使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn的用法示例。


在下文中一共展示了sklearn.datasets方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_ShapLinearExplainer

# 需要导入模块: import sklearn [as 别名]
# 或者: from sklearn import datasets [as 别名]
def test_ShapLinearExplainer(self):
        corpus, y = shap.datasets.imdb()
        corpus_train, corpus_test, y_train, y_test = train_test_split(corpus, y, test_size=0.2, random_state=7)

        vectorizer = TfidfVectorizer(min_df=10)
        X_train = vectorizer.fit_transform(corpus_train)
        X_test = vectorizer.transform(corpus_test)

        model = sklearn.linear_model.LogisticRegression(penalty="l1", C=0.1, solver='liblinear')
        model.fit(X_train, y_train)

        shapexplainer = LinearExplainer(model, X_train, feature_dependence="independent")
        shap_values = shapexplainer.explain_instance(X_test)
        print("Invoked Shap LinearExplainer")

    # comment this test as travis runs out of resources 
开发者ID:IBM,项目名称:AIX360,代码行数:18,代码来源:test_shap.py

示例2: test_ShapGradientExplainer

# 需要导入模块: import sklearn [as 别名]
# 或者: from sklearn import datasets [as 别名]
def test_ShapGradientExplainer(self):

    #     model = VGG16(weights='imagenet', include_top=True)
    #     X, y = shap.datasets.imagenet50()
    #     to_explain = X[[39, 41]]
    #
    #     url = "https://s3.amazonaws.com/deep-learning-models/image-models/imagenet_class_index.json"
    #     fname = shap.datasets.cache(url)
    #     with open(fname) as f:
    #         class_names = json.load(f)
    #
    #     def map2layer(x, layer):
    #         feed_dict = dict(zip([model.layers[0].input], [preprocess_input(x.copy())]))
    #         return K.get_session().run(model.layers[layer].input, feed_dict)
    #
    #     e = GradientExplainer((model.layers[7].input, model.layers[-1].output),
    #                           map2layer(preprocess_input(X.copy()), 7))
    #     shap_values, indexes = e.explain_instance(map2layer(to_explain, 7), ranked_outputs=2)
    #
          print("Skipped Shap GradientExplainer") 
开发者ID:IBM,项目名称:AIX360,代码行数:22,代码来源:test_shap.py

示例3: test_download

# 需要导入模块: import sklearn [as 别名]
# 或者: from sklearn import datasets [as 别名]
def test_download(tmpdata):
    """Test that fetch_mldata is able to download and cache a data set."""
    _urlopen_ref = datasets.mldata.urlopen
    datasets.mldata.urlopen = mock_mldata_urlopen({
        'mock': {
            'label': sp.ones((150,)),
            'data': sp.ones((150, 4)),
        },
    })
    try:
        mock = assert_warns(DeprecationWarning, fetch_mldata,
                            'mock', data_home=tmpdata)
        for n in ["COL_NAMES", "DESCR", "target", "data"]:
            assert_in(n, mock)

        assert_equal(mock.target.shape, (150,))
        assert_equal(mock.data.shape, (150, 4))

        assert_raises(datasets.mldata.HTTPError,
                      assert_warns, DeprecationWarning,
                      fetch_mldata, 'not_existing_name')
    finally:
        datasets.mldata.urlopen = _urlopen_ref 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:25,代码来源:test_mldata.py

示例4: test_fetch_one_column

# 需要导入模块: import sklearn [as 别名]
# 或者: from sklearn import datasets [as 别名]
def test_fetch_one_column(tmpdata):
    _urlopen_ref = datasets.mldata.urlopen
    try:
        dataname = 'onecol'
        # create fake data set in cache
        x = sp.arange(6).reshape(2, 3)
        datasets.mldata.urlopen = mock_mldata_urlopen({dataname: {'x': x}})

        dset = fetch_mldata(dataname, data_home=tmpdata)
        for n in ["COL_NAMES", "DESCR", "data"]:
            assert_in(n, dset)
        assert_not_in("target", dset)

        assert_equal(dset.data.shape, (2, 3))
        assert_array_equal(dset.data, x)

        # transposing the data array
        dset = fetch_mldata(dataname, transpose_data=False, data_home=tmpdata)
        assert_equal(dset.data.shape, (3, 2))
    finally:
        datasets.mldata.urlopen = _urlopen_ref 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:23,代码来源:test_mldata.py

示例5: test_retry_with_clean_cache

# 需要导入模块: import sklearn [as 别名]
# 或者: from sklearn import datasets [as 别名]
def test_retry_with_clean_cache(tmpdir):
    data_id = 61
    openml_path = sklearn.datasets.openml._DATA_FILE.format(data_id)
    cache_directory = str(tmpdir.mkdir('scikit_learn_data'))
    location = _get_local_path(openml_path, cache_directory)
    os.makedirs(os.path.dirname(location))

    with open(location, 'w') as f:
        f.write("")

    @_retry_with_clean_cache(openml_path, cache_directory)
    def _load_data():
        # The first call will raise an error since location exists
        if os.path.exists(location):
            raise Exception("File exist!")
        return 1

    warn_msg = "Invalid cache, redownloading file"
    with pytest.warns(RuntimeWarning, match=warn_msg):
        result = _load_data()
    assert result == 1 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:23,代码来源:test_openml.py

示例6: test_fetch_openml_cache

# 需要导入模块: import sklearn [as 别名]
# 或者: from sklearn import datasets [as 别名]
def test_fetch_openml_cache(monkeypatch, gzip_response, tmpdir):
    def _mock_urlopen_raise(request):
        raise ValueError('This mechanism intends to test correct cache'
                         'handling. As such, urlopen should never be '
                         'accessed. URL: %s' % request.get_full_url())
    data_id = 2
    cache_directory = str(tmpdir.mkdir('scikit_learn_data'))
    _monkey_patch_webbased_functions(
        monkeypatch, data_id, gzip_response)
    X_fetched, y_fetched = fetch_openml(data_id=data_id, cache=True,
                                        data_home=cache_directory,
                                        return_X_y=True)

    monkeypatch.setattr(sklearn.datasets.openml, 'urlopen',
                        _mock_urlopen_raise)

    X_cached, y_cached = fetch_openml(data_id=data_id, cache=True,
                                      data_home=cache_directory,
                                      return_X_y=True)
    np.testing.assert_array_equal(X_fetched, X_cached)
    np.testing.assert_array_equal(y_fetched, y_cached) 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:23,代码来源:test_openml.py

示例7: setup

# 需要导入模块: import sklearn [as 别名]
# 或者: from sklearn import datasets [as 别名]
def setup(pblm):
        import sklearn.datasets
        iris = sklearn.datasets.load_iris()

        pblm.primary_task_key = 'iris'
        pblm.default_data_key = 'learn(all)'
        pblm.default_clf_key = 'RF'

        X_df = pd.DataFrame(iris.data, columns=iris.feature_names)
        samples = MultiTaskSamples(X_df.index)
        samples.apply_indicators(
            {'iris': {name: iris.target == idx
                      for idx, name in enumerate(iris.target_names)}})
        samples.X_dict = {'learn(all)': X_df}

        pblm.samples = samples
        pblm.xval_kw['type'] = 'StratifiedKFold' 
开发者ID:Erotemic,项目名称:ibeis,代码行数:19,代码来源:clf_helpers.py

示例8: burczynski06

# 需要导入模块: import sklearn [as 别名]
# 或者: from sklearn import datasets [as 别名]
def burczynski06() -> AnnData:
    """\
    Bulk data with conditions ulcerative colitis (UC) and Crohn's disease (CD).

    The study assesses transcriptional profiles in peripheral blood mononuclear
    cells from 42 healthy individuals, 59 CD patients, and 26 UC patients by
    hybridization to microarrays interrogating more than 22,000 sequences.

    Reference
    ---------
    Burczynski et al., "Molecular classification of Crohn's disease and
    ulcerative colitis patients using transcriptional profiles in peripheral
    blood mononuclear cells"
    J Mol Diagn 8, 51 (2006). PMID:16436634.
    """
    filename = settings.datasetdir / 'burczynski06/GDS1615_full.soft.gz'
    url = 'ftp://ftp.ncbi.nlm.nih.gov/geo/datasets/GDS1nnn/GDS1615/soft/GDS1615_full.soft.gz'
    adata = read(filename, backup_url=url)
    return adata 
开发者ID:theislab,项目名称:scanpy,代码行数:21,代码来源:_datasets.py

示例9: pbmc68k_reduced

# 需要导入模块: import sklearn [as 别名]
# 或者: from sklearn import datasets [as 别名]
def pbmc68k_reduced() -> AnnData:
    """\
    Subsampled and processed 68k PBMCs.

    10x PBMC 68k dataset from
    https://support.10xgenomics.com/single-cell-gene-expression/datasets

    The original PBMC 68k dataset was preprocessed using scanpy and was saved
    keeping only 724 cells and 221 highly variable genes.

    The saved file contains the annotation of cell types (key: `'bulk_labels'`),
    UMAP coordinates, louvain clustering and gene rankings based on the
    `bulk_labels`.

    Returns
    -------
    Annotated data matrix.
    """

    filename = HERE / '10x_pbmc68k_reduced.h5ad'
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", category=FutureWarning, module="anndata")
        return read(filename) 
开发者ID:theislab,项目名称:scanpy,代码行数:25,代码来源:_datasets.py

示例10: __init__

# 需要导入模块: import sklearn [as 别名]
# 或者: from sklearn import datasets [as 别名]
def __init__(self, subset, shuffle=True, random_state=42):
        if subset == "all":
            shuffle = False  # chronological split violated if shuffled
        else:
            shuffle = shuffle

        dataset = sklearn.datasets.fetch_rcv1(subset=subset, shuffle=shuffle, random_state=random_state)
        self.data = dataset.data
        self.labels = dataset.target
        self.class_names = dataset.target_names

        assert len(self.class_names) == 103  # 103 categories according to LYRL2004
        N, C = self.labels.shape
        assert C == len(self.class_names)

        N, V = self.data.shape
        self.vocab = np.zeros(V)  # hacky workaround to create placeholder value
        self.orig_vocab_size = V 
开发者ID:SuyashLakhotia,项目名称:TextCategorization,代码行数:20,代码来源:data.py

示例11: _bunch_to_df

# 需要导入模块: import sklearn [as 别名]
# 或者: from sklearn import datasets [as 别名]
def _bunch_to_df(bunch, schema_X, schema_y, test_size=0.2, random_state=42):
    train_X_arr, test_X_arr, train_y_arr, test_y_arr = train_test_split(
        bunch.data, bunch.target,
        test_size=test_size, random_state=random_state)
    feature_schemas = schema_X['items']['items']
    if isinstance(feature_schemas, list):
        feature_names = [f['description'] for f in feature_schemas]
    else:
        feature_names = [f'x{i}' for i in range(schema_X['items']['maxItems'])]
    train_X_df = pd.DataFrame(train_X_arr, columns=feature_names)
    test_X_df = pd.DataFrame(test_X_arr, columns=feature_names)
    train_y_df = pd.Series(train_y_arr, name='target')
    test_y_df = pd.Series(test_y_arr, name='target')
    train_nrows, test_nrows = train_X_df.shape[0], test_X_df.shape[0]
    train_X = lale.datasets.data_schemas.add_schema(train_X_df, {
        **schema_X, 'minItems': train_nrows, 'maxItems': train_nrows })
    test_X = lale.datasets.data_schemas.add_schema(test_X_df, {
        **schema_X, 'minItems': test_nrows, 'maxItems': test_nrows })
    train_y = lale.datasets.data_schemas.add_schema(train_y_df, {
        **schema_y, 'minItems': train_nrows, 'maxItems': train_nrows })
    test_y = lale.datasets.data_schemas.add_schema(test_y_df, {
        **schema_y, 'minItems': test_nrows, 'maxItems': test_nrows })
    return (train_X, train_y), (test_X, test_y) 
开发者ID:IBM,项目名称:lale,代码行数:25,代码来源:sklearn_to_pandas.py

示例12: load_iris_df

# 需要导入模块: import sklearn [as 别名]
# 或者: from sklearn import datasets [as 别名]
def load_iris_df(test_size=0.2):
    iris = sklearn.datasets.load_iris()
    X = iris.data
    y = iris.target
    target_name = 'target'
    X, y = shuffle(iris.data, iris.target, random_state=42)
    X_train, X_test, y_train, y_test = train_test_split(
        X, y, test_size=test_size, random_state=42)

    X_train_df = pd.DataFrame(X_train, columns = iris.feature_names)
    y_train_df = pd.Series(y_train, name = target_name)

    X_test_df = pd.DataFrame(X_test, columns = iris.feature_names)
    y_test_df = pd.Series(y_test, name = target_name)

    return (X_train_df, y_train_df), (X_test_df, y_test_df) 
开发者ID:IBM,项目名称:lale,代码行数:18,代码来源:sklearn_to_pandas.py

示例13: digits_df

# 需要导入模块: import sklearn [as 别名]
# 或者: from sklearn import datasets [as 别名]
def digits_df(test_size=0.2, random_state=42):
    digits = sklearn.datasets.load_digits()
    ncols = digits.data.shape[1]
    schema_X = {
      'description': 'Features of digits dataset (classification).',
      'documentation_url': 'https://scikit-learn.org/0.20/datasets/index.html#optical-recognition-of-handwritten-digits-dataset',
      'type': 'array',
      'items': {
        'type': 'array',
        'minItems': ncols, 'maxItems': ncols,
        'items': {
          'type': 'number', 'minimum': 0, 'maximum': 16}}}
    schema_y = {
      '$schema': 'http://json-schema.org/draft-04/schema#',
      'type': 'array',
      'items': {
        'type': 'integer', 'minimum': 0, 'maximum': 9}}
    (train_X, train_y), (test_X, test_y) = _bunch_to_df(
        digits, schema_X, schema_y, test_size, random_state)
    return (train_X, train_y), (test_X, test_y) 
开发者ID:IBM,项目名称:lale,代码行数:22,代码来源:sklearn_to_pandas.py

示例14: synthesize_data

# 需要导入模块: import sklearn [as 别名]
# 或者: from sklearn import datasets [as 别名]
def synthesize_data(n_samples, n_features, n_targets):
    rnd = await mpc.transfer(random.randrange(2**31), senders=0)
    X, Y = sklearn.datasets.make_regression(n_samples=n_samples,
                                            n_features=n_features,
                                            n_informative=max(1, n_features - 5),
                                            n_targets=n_targets, bias=42,
                                            effective_rank=max(1, n_features - 3),
                                            tail_strength=0.5, noise=1.2,
                                            random_state=rnd)  # all parties use same rnd
    if n_targets == 1:
        Y = np.transpose([Y])
    X = np.concatenate((X, Y), axis=1)
    b_m = np.min(X, axis=0)
    b_M = np.max(X, axis=0)
    coef_add = [-(m + M) / 2 for m, M in zip(b_m, b_M)]
    coef_mul = [2 / (M - m) for m, M in zip(b_m, b_M)]
    for xi in X:
        for j in range(len(xi)):
            # map to [-1,1] range
            xi[j] = (xi[j] + coef_add[j]) * coef_mul[j]
    return X 
开发者ID:lschoe,项目名称:mpyc,代码行数:23,代码来源:ridgeregression.py

示例15: mnist

# 需要导入模块: import sklearn [as 别名]
# 或者: from sklearn import datasets [as 别名]
def mnist(random_state=42):
    """
    x is in [0, 1] with shape (b, 1, 28, 28) and dtype floatX
    y is an int32 vector in range(10)
    """
    raw = sklearn.datasets.fetch_mldata('MNIST original')
    # rescaling to [0, 1] instead of [0, 255]
    x = raw['data'].reshape(-1, 1, 28, 28).astype(fX) / 255.0
    y = raw['target'].astype("int32")
    # NOTE: train data is initially in order of 0 through 9
    x1, x2, y1, y2 = sklearn.cross_validation.train_test_split(
        x[:60000],
        y[:60000],
        random_state=random_state,
        test_size=10000)
    train = {"x": x1, "y": y1}
    valid = {"x": x2, "y": y2}
    # NOTE: test data is in order of 0 through 9
    test = {"x": x[60000:], "y": y[60000:]}
    return train, valid, test 
开发者ID:diogo149,项目名称:treeano,代码行数:22,代码来源:datasets.py


注:本文中的sklearn.datasets方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。