本文整理汇总了Python中sklearn.cross_validation.KFold方法的典型用法代码示例。如果您正苦于以下问题:Python cross_validation.KFold方法的具体用法?Python cross_validation.KFold怎么用?Python cross_validation.KFold使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sklearn.cross_validation
的用法示例。
在下文中一共展示了cross_validation.KFold方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: crossValidation
# 需要导入模块: from sklearn import cross_validation [as 别名]
# 或者: from sklearn.cross_validation import KFold [as 别名]
def crossValidation(X, y, cvFolds, estimator):
r2 = np.zeros((cvFolds,1))
kf = KFold(len(X), n_folds=cvFolds, shuffle=True, random_state = 30)
cv_j=0
for train_index, test_index in kf:
train_X = X[train_index,:]
test_X = X[test_index,:]
train_y = y[train_index]
test_y = y[test_index]
est.fit(train_X,train_y)
y_true, y_pred = test_y,est.predict(test_X)
r2[cv_j] = r2_score(y_true, y_pred)
cv_j = cv_j + 1
return r2
#parameters: 'X' the predictors, 'y' the target, 'cvFolds' number of folds, 'estimator' machine learning algorithm
#returns: the R squared for each fold
示例2: nestedCrossValidation
# 需要导入模块: from sklearn import cross_validation [as 别名]
# 或者: from sklearn.cross_validation import KFold [as 别名]
def nestedCrossValidation(X, y, cvFolds, estimator):
kf = KFold(len(X), n_folds=cvFolds, shuffle=True, random_state = 30)
cv_j=0
param_grid = {'alpha': [0.0000001,0.000001,0.00001,0.0001,0.001,0.01,0.1,1,10,100,1000,10000,100000, 1000000, 10000000,1000000000]}
r2 = np.zeros((cvFolds,1))
for train_index, test_index in kf:
train_X = X[train_index,:]
test_X = X[test_index,:]
train_y = y[train_index]
test_y = y[test_index]
grid = GridSearchCV(estimator, param_grid=param_grid, verbose=0, cv=cvFolds, scoring='mean_squared_error')
grid.fit(train_X,train_y)
y_true, y_pred = test_y,grid.best_estimator_.predict(test_X)
r2[cv_j] = r2_score(y_true, y_pred)
cv_j = cv_j + 1
return r2
#%% main script
示例3: create_cv_id
# 需要导入模块: from sklearn import cross_validation [as 别名]
# 或者: from sklearn.cross_validation import KFold [as 别名]
def create_cv_id(target, n_folds_ = 5, cv_id_name=cv_id_name, seed=407):
try:
a = StratifiedKFold(target['target'],n_folds=n_folds_, shuffle=True, random_state=seed)
cv_index = a.test_folds
print 'Done StratifiedKFold'
except:
cv_index = np.empty(len(target))
a = KFold(len(target),n_folds=n_folds_, shuffle=True, random_state=seed)
for idx, i in enumerate(a):
cv_index[i[1]] = idx
cv_index = cv_index.astype(int)
print 'Done Kfold'
np.save(INPUT_PATH + cv_id_name, cv_index)
return
######### Utils #########
#feature listを渡してデータを作成するutil関数
示例4: fit_blending_model
# 需要导入模块: from sklearn import cross_validation [as 别名]
# 或者: from sklearn.cross_validation import KFold [as 别名]
def fit_blending_model(self, X_blend, y):
if self.verbose:
model_name = "%s" % self.blending_model.__repr__()
print('Fitting Blending Model:\n%s' % model_name)
kf = list(KFold(y.shape[0], self.n_folds))
# run CV
self.blending_model_cv = []
for j, (train_idx, test_idx) in enumerate(kf):
if self.verbose:
print('Fold %d' % j)
X_train = X_blend[train_idx]
y_train = y[train_idx]
model = copy(self.blending_model)
model.fit(X_train, y_train)
# add trained model to list of CV'd models
self.blending_model_cv.append(model)
示例5: run_model
# 需要导入模块: from sklearn import cross_validation [as 别名]
# 或者: from sklearn.cross_validation import KFold [as 别名]
def run_model(model,dtrain,predictor_var,target,scoring_method='mean_squared_error'):
cv_method = KFold(len(dtrain),5)
cv_scores = cross_val_score(model,dtrain[predictor_var],dtrain[target],cv=cv_method,scoring=scoring_method)
#print cv_scores, np.mean(cv_scores), np.sqrt((-1)*np.mean(cv_scores))
dtrain_for_val = dtrain[dtrain['Year']<2000]
dtest_for_val = dtrain[dtrain['Year']>1999]
#cv_method = KFold(len(dtrain_for_val),5)
#cv_scores_2 = cross_val_score(model,dtrain_for_val[predictor_var],dtrain_for_val[target],cv=cv_method,scoring=scoring_method)
#print cv_scores_2, np.mean(cv_scores_2)
dtrain_for_val_ini = dtrain_for_val[predictor_var]
dtest_for_val_ini = dtest_for_val[predictor_var]
model.fit(dtrain_for_val_ini,dtrain_for_val[target])
pred_for_val = model.predict(dtest_for_val_ini)
#print math.sqrt(mean_squared_error(dtest_for_val['Footfall'],pred_for_val))
示例6: test_kfold_no_shuffle
# 需要导入模块: from sklearn import cross_validation [as 别名]
# 或者: from sklearn.cross_validation import KFold [as 别名]
def test_kfold_no_shuffle():
# Manually check that KFold preserves the data ordering on toy datasets
splits = iter(cval.KFold(4, 2))
train, test = next(splits)
assert_array_equal(test, [0, 1])
assert_array_equal(train, [2, 3])
train, test = next(splits)
assert_array_equal(test, [2, 3])
assert_array_equal(train, [0, 1])
splits = iter(cval.KFold(5, 2))
train, test = next(splits)
assert_array_equal(test, [0, 1, 2])
assert_array_equal(train, [3, 4])
train, test = next(splits)
assert_array_equal(test, [3, 4])
assert_array_equal(train, [0, 1, 2])
示例7: test_shuffle_kfold
# 需要导入模块: from sklearn import cross_validation [as 别名]
# 或者: from sklearn.cross_validation import KFold [as 别名]
def test_shuffle_kfold():
# Check the indices are shuffled properly, and that all indices are
# returned in the different test folds
kf = cval.KFold(300, 3, shuffle=True, random_state=0)
ind = np.arange(300)
all_folds = None
for train, test in kf:
assert_true(np.any(np.arange(100) != ind[test]))
assert_true(np.any(np.arange(100, 200) != ind[test]))
assert_true(np.any(np.arange(200, 300) != ind[test]))
if all_folds is None:
all_folds = ind[test].copy()
else:
all_folds = np.concatenate((all_folds, ind[test]))
all_folds.sort()
assert_array_equal(all_folds, ind)
示例8: test_predefinedsplit_with_kfold_split
# 需要导入模块: from sklearn import cross_validation [as 别名]
# 或者: from sklearn.cross_validation import KFold [as 别名]
def test_predefinedsplit_with_kfold_split():
# Check that PredefinedSplit can reproduce a split generated by Kfold.
folds = -1 * np.ones(10)
kf_train = []
kf_test = []
for i, (train_ind, test_ind) in enumerate(cval.KFold(10, 5, shuffle=True)):
kf_train.append(train_ind)
kf_test.append(test_ind)
folds[test_ind] = i
ps_train = []
ps_test = []
ps = cval.PredefinedSplit(folds)
for train_ind, test_ind in ps:
ps_train.append(train_ind)
ps_test.append(test_ind)
assert_array_equal(ps_train, kf_train)
assert_array_equal(ps_test, kf_test)
示例9: test_cross_val_score_mask
# 需要导入模块: from sklearn import cross_validation [as 别名]
# 或者: from sklearn.cross_validation import KFold [as 别名]
def test_cross_val_score_mask():
# test that cross_val_score works with boolean masks
svm = SVC(kernel="linear")
iris = load_iris()
X, y = iris.data, iris.target
cv_indices = cval.KFold(len(y), 5)
scores_indices = cval.cross_val_score(svm, X, y, cv=cv_indices)
cv_indices = cval.KFold(len(y), 5)
cv_masks = []
for train, test in cv_indices:
mask_train = np.zeros(len(y), dtype=np.bool)
mask_test = np.zeros(len(y), dtype=np.bool)
mask_train[train] = 1
mask_test[test] = 1
cv_masks.append((train, test))
scores_masks = cval.cross_val_score(svm, X, y, cv=cv_masks)
assert_array_equal(scores_indices, scores_masks)
示例10: test_cross_val_generator_with_indices
# 需要导入模块: from sklearn import cross_validation [as 别名]
# 或者: from sklearn.cross_validation import KFold [as 别名]
def test_cross_val_generator_with_indices():
X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]])
y = np.array([1, 1, 2, 2])
labels = np.array([1, 2, 3, 4])
# explicitly passing indices value is deprecated
loo = cval.LeaveOneOut(4)
lpo = cval.LeavePOut(4, 2)
kf = cval.KFold(4, 2)
skf = cval.StratifiedKFold(y, 2)
lolo = cval.LeaveOneLabelOut(labels)
lopo = cval.LeavePLabelOut(labels, 2)
ps = cval.PredefinedSplit([1, 1, 2, 2])
ss = cval.ShuffleSplit(2)
for cv in [loo, lpo, kf, skf, lolo, lopo, ss, ps]:
for train, test in cv:
assert_not_equal(np.asarray(train).dtype.kind, 'b')
assert_not_equal(np.asarray(train).dtype.kind, 'b')
X[train], X[test]
y[train], y[test]
示例11: test_check_cv_return_types
# 需要导入模块: from sklearn import cross_validation [as 别名]
# 或者: from sklearn.cross_validation import KFold [as 别名]
def test_check_cv_return_types():
X = np.ones((9, 2))
cv = cval.check_cv(3, X, classifier=False)
assert_true(isinstance(cv, cval.KFold))
y_binary = np.array([0, 1, 0, 1, 0, 0, 1, 1, 1])
cv = cval.check_cv(3, X, y_binary, classifier=True)
assert_true(isinstance(cv, cval.StratifiedKFold))
y_multiclass = np.array([0, 1, 0, 1, 2, 1, 2, 0, 2])
cv = cval.check_cv(3, X, y_multiclass, classifier=True)
assert_true(isinstance(cv, cval.StratifiedKFold))
X = np.ones((5, 2))
y_multilabel = [[1, 0, 1], [1, 1, 0], [0, 0, 0], [0, 1, 1], [1, 0, 0]]
cv = cval.check_cv(3, X, y_multilabel, classifier=True)
assert_true(isinstance(cv, cval.KFold))
y_multioutput = np.array([[1, 2], [0, 3], [0, 0], [3, 1], [2, 0]])
cv = cval.check_cv(3, X, y_multioutput, classifier=True)
assert_true(isinstance(cv, cval.KFold))
示例12: evaluate_cross_validation
# 需要导入模块: from sklearn import cross_validation [as 别名]
# 或者: from sklearn.cross_validation import KFold [as 别名]
def evaluate_cross_validation(clf, X, y, K):
# create a k-fold cross validation iterator
cv = KFold(len(y), K, shuffle=True, random_state=0)
# by default the score used is the one returned by score method of the estimator (accuracy)
scores = cross_val_score(clf, X, y, cv=cv)
print "Scores: ", (scores)
print ("Mean score: {0:.3f} (+/-{1:.3f})".format(np.mean(scores), sem(scores)))
# Confusion Matrix and Results
开发者ID:its-izhar,项目名称:Emotion-Recognition-Using-SVMs,代码行数:12,代码来源:Train Classifier and Test Video Feed.py
示例13: folding
# 需要导入模块: from sklearn import cross_validation [as 别名]
# 或者: from sklearn.cross_validation import KFold [as 别名]
def folding(y, n_folds):
k_fold = KFold(y.size, n_folds=n_folds, random_state=0)
return k_fold
示例14: acc
# 需要导入模块: from sklearn import cross_validation [as 别名]
# 或者: from sklearn.cross_validation import KFold [as 别名]
def acc(predict_file):
print("...Computing accuracy.")
folds = KFold(n=6000, n_folds=10, shuffle=False)
thresholds = np.arange(-1.0, 1.0, 0.005)
accuracy = []
thd = []
with open(predict_file, "r") as f:
predicts = f.readlines()
predicts = np.array(map(lambda line:line.strip('\n').split(), predicts))
for idx, (train, test) in enumerate(folds):
logging.info("processing fold {}...".format(idx))
best_thresh = find_best_threshold(thresholds, predicts[train])
accuracy.append(eval_acc(best_thresh, predicts[test]))
thd.append(best_thresh)
return accuracy,thd
示例15: main
# 需要导入模块: from sklearn import cross_validation [as 别名]
# 或者: from sklearn.cross_validation import KFold [as 别名]
def main(argv):
def formatter(prog):
return argparse.HelpFormatter(prog, max_help_position=100, width=200)
argparser = argparse.ArgumentParser('K-Folder for Knowledge Graphs', formatter_class=formatter)
argparser.add_argument('triples', action='store', type=str, default=None)
args = argparser.parse_args(argv)
triples_path = args.triples
triples = read_triples(triples_path)
nb_triples = len(triples)
kf = KFold(n=nb_triples, n_folds=10, random_state=0, shuffle=True)
triples_np = np.array(triples)
for fold_no, (train_idx, test_idx) in enumerate(kf):
train_valid_triples = triples_np[train_idx]
test_triples = triples_np[test_idx]
train_triples, valid_triples, _, _ = train_test_split(train_valid_triples,
np.ones(train_valid_triples.shape[0]),
test_size=len(test_triples), random_state=0)
train_lines = ['{}\t{}\t{}'.format(s, p, o) for [s, p, o] in train_triples]
valid_lines = ['{}\t{}\t{}'.format(s, p, o) for [s, p, o] in valid_triples]
test_lines = ['{}\t{}\t{}'.format(s, p, o) for [s, p, o] in test_triples]
if not os.path.exists('folds/{}'.format(str(fold_no))):
os.mkdir('folds/{}'.format(str(fold_no)))
with open('folds/{}/nations_train.tsv'.format(str(fold_no)), 'w') as f:
f.writelines(['{}\n'.format(line) for line in train_lines])
with open('folds/{}/nations_valid.tsv'.format(str(fold_no)), 'w') as f:
f.writelines(['{}\n'.format(line) for line in valid_lines])
with open('folds/{}/nations_test.tsv'.format(str(fold_no)), 'w') as f:
f.writelines(['{}\n'.format(line) for line in test_lines])