本文整理汇总了Python中sklearn.base.is_regressor方法的典型用法代码示例。如果您正苦于以下问题:Python base.is_regressor方法的具体用法?Python base.is_regressor怎么用?Python base.is_regressor使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sklearn.base
的用法示例。
在下文中一共展示了base.is_regressor方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: base_estimator
# 需要导入模块: from sklearn import base [as 别名]
# 或者: from sklearn.base import is_regressor [as 别名]
def base_estimator(self, value):
# Build `base_estimator` if string given
if isinstance(value, str):
value = cook_estimator(
value, space=self.space, random_state=self.rng.randint(0, np.iinfo(np.int32).max)
)
# Check if regressor
if not is_regressor(value) and value is not None:
raise ValueError(f"`base_estimator` must be a regressor. Got {value}")
# Treat per second acquisition function specially
is_multi_regressor = isinstance(value, MultiOutputRegressor)
if self.acq_func.endswith("ps") and not is_multi_regressor:
value = MultiOutputRegressor(value)
self._base_estimator = value
示例2: __init__
# 需要导入模块: from sklearn import base [as 别名]
# 或者: from sklearn.base import is_regressor [as 别名]
def __init__(self, models):
"""Proxy class to build an ensemble of models with an API as one
Parameters
----------
models: array
An array of models
"""
self._models = models if len(models) else None
if self._models is not None:
if is_classifier(self._models[0]):
check_type = is_classifier
self._scoring_fun = accuracy_score
elif is_regressor(self._models[0]):
check_type = is_regressor
self._scoring_fun = r2_score
else:
raise ValueError('Expected regressors or classifiers,'
' got %s instead' % type(self._models[0]))
for model in self._models:
if not check_type(model):
raise ValueError('Different types of models found, privide'
' either regressors or classifiers.')
示例3: _check_final_regressor
# 需要导入模块: from sklearn import base [as 别名]
# 或者: from sklearn.base import is_regressor [as 别名]
def _check_final_regressor(self):
if not is_regressor(self.final_regressor):
raise ValueError(f"`final_regressor` should be a regressor, "
f"but found: {self.final_regressor}")
示例4: check_fit_idempotent
# 需要导入模块: from sklearn import base [as 别名]
# 或者: from sklearn.base import is_regressor [as 别名]
def check_fit_idempotent(name, estimator_orig):
# Check that est.fit(X) is the same as est.fit(X).fit(X). Ideally we would
# check that the estimated parameters during training (e.g. coefs_) are
# the same, but having a universal comparison function for those
# attributes is difficult and full of edge cases. So instead we check that
# predict(), predict_proba(), decision_function() and transform() return
# the same results.
check_methods = ["predict", "transform", "decision_function",
"predict_proba"]
rng = np.random.RandomState(0)
if estimator_orig._get_tags()['non_deterministic']:
msg = name + ' is non deterministic'
raise SkipTest(msg)
estimator = clone(estimator_orig)
set_random_state(estimator)
if 'warm_start' in estimator.get_params().keys():
estimator.set_params(warm_start=False)
n_samples = 100
X, _ = _create_small_ts_dataset()
X = X.reshape((X.shape[0], X.shape[1]))
X = pairwise_estimator_convert_X(X, estimator)
if is_regressor(estimator_orig):
y = rng.normal(size=n_samples)
else:
y = rng.randint(low=0, high=2, size=n_samples)
train, test = next(ShuffleSplit(test_size=.2, random_state=rng).split(X))
X_train, y_train = _safe_split(estimator, X, y, train)
X_test, y_test = _safe_split(estimator, X, y, test, train)
# Fit for the first time
estimator.fit(X_train, y_train)
result = {method: getattr(estimator, method)(X_test)
for method in check_methods
if hasattr(estimator, method)}
# Fit again
set_random_state(estimator)
estimator.fit(X_train, y_train)
for method in check_methods:
if hasattr(estimator, method):
new_result = getattr(estimator, method)(X_test)
if np.issubdtype(new_result.dtype, np.floating):
tol = 2*np.finfo(new_result.dtype).eps
else:
tol = 2*np.finfo(np.float64).eps
assert_allclose_dense_sparse(
result[method], new_result,
atol=max(tol, 1e-9), rtol=max(tol, 1e-7),
err_msg="Idempotency check failed for method {}".format(method)
)
示例5: yield_all_checks
# 需要导入模块: from sklearn import base [as 别名]
# 或者: from sklearn.base import is_regressor [as 别名]
def yield_all_checks(name, estimator):
tags = estimator._get_tags()
if "2darray" not in tags["X_types"]:
warnings.warn("Can't test estimator {} which requires input "
" of type {}".format(name, tags["X_types"]),
SkipTestWarning)
return
if tags["_skip_test"]:
warnings.warn("Explicit SKIP via _skip_test tag for estimator "
"{}.".format(name),
SkipTestWarning)
return
yield from _yield_checks(name, estimator)
if is_classifier(estimator):
yield from _yield_classifier_checks(name, estimator)
if is_regressor(estimator):
yield from _yield_regressor_checks(name, estimator)
if hasattr(estimator, 'transform'):
if not tags["allow_variable_length"]:
# Transformer tests ensure that shapes are the same at fit and
# transform time, hence we need to skip them for estimators that
# allow variable-length inputs
yield from _yield_transformer_checks(name, estimator)
if isinstance(estimator, ClusterMixin):
yield from _yield_clustering_checks(name, estimator)
if is_outlier_detector(estimator):
yield from _yield_outliers_checks(name, estimator)
# We are not strict on presence/absence of the 3rd dimension
# yield check_fit2d_predict1d
if not tags["non_deterministic"]:
yield check_methods_subset_invariance
yield check_fit2d_1sample
yield check_fit2d_1feature
yield check_fit1d
yield check_get_params_invariance
yield check_set_params
yield check_dict_unchanged
yield check_dont_overwrite_parameters
yield check_fit_idempotent
if (is_classifier(estimator) or
is_regressor(estimator) or
isinstance(estimator, ClusterMixin)):
if tags["allow_variable_length"]:
yield check_different_length_fit_predict_transform