本文整理汇总了Python中sklearn.base.ClusterMixin方法的典型用法代码示例。如果您正苦于以下问题:Python base.ClusterMixin方法的具体用法?Python base.ClusterMixin怎么用?Python base.ClusterMixin使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sklearn.base
的用法示例。
在下文中一共展示了base.ClusterMixin方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _generate_bases_test
# 需要导入模块: from sklearn import base [as 别名]
# 或者: from sklearn.base import ClusterMixin [as 别名]
def _generate_bases_test(est, pd_est):
def test(self):
self.assertTrue(isinstance(pd_est, FrameMixin), pd_est)
self.assertFalse(isinstance(est, FrameMixin))
self.assertTrue(isinstance(pd_est, base.BaseEstimator))
try:
mixins = [
base.ClassifierMixin,
base.ClusterMixin,
base.BiclusterMixin,
base.TransformerMixin,
base.DensityMixin,
base.MetaEstimatorMixin,
base.ClassifierMixin,
base.RegressorMixin]
except:
if _sklearn_ver > 17:
raise
mixins = [
base.ClassifierMixin,
base.ClusterMixin,
base.BiclusterMixin,
base.TransformerMixin,
base.MetaEstimatorMixin,
base.ClassifierMixin,
base.RegressorMixin]
for mixin in mixins:
self.assertEqual(
isinstance(pd_est, mixin),
isinstance(est, mixin),
mixin)
return test
示例2: run_silhouette_cv_estimator
# 需要导入模块: from sklearn import base [as 别名]
# 或者: from sklearn.base import ClusterMixin [as 别名]
def run_silhouette_cv_estimator(estimator, x, n_folds=10):
"""
只针对kmean的cv验证,使用silhouette_score对聚类后的结果labels_
进行度量使用silhouette_score,kmean的cv验证只是简单的通过np.random.choice
进行随机筛选x数据进行聚类的silhouette_score度量,并不涉及训练集测试集
:param estimator: keman或者支持estimator.labels_, 只通过if not isinstance(estimator, ClusterMixin)进行过滤
:param x: x特征矩阵
:param n_folds: int,透传KFold参数,切割训练集测试集参数,默认10
:return: eg: array([ 0.693 , 0.652 , 0.6845, 0.6696, 0.6732, 0.6874, 0.668 ,
0.6743, 0.6748, 0.671 ])
"""
if not isinstance(estimator, ClusterMixin):
print('estimator must be ClusterMixin')
return
silhouette_list = list()
# eg: n_folds = 10, len(x) = 150 -> 150 * 0.9 = 135
choice_cnt = int(len(x) * ((n_folds - 1) / n_folds))
choice_source = np.arange(0, x.shape[0])
# 所有执行fit的操作使用clone一个新的
estimator = clone(estimator)
for _ in np.arange(0, n_folds):
# 只是简单的通过np.random.choice进行随机筛选x数据
choice_index = np.random.choice(choice_source, choice_cnt)
x_choice = x[choice_index]
estimator.fit(x_choice)
# 进行聚类的silhouette_score度量
silhouette_score = metrics.silhouette_score(x_choice, estimator.labels_, metric='euclidean')
silhouette_list.append(silhouette_score)
return silhouette_list
示例3: _check_parameters
# 需要导入模块: from sklearn import base [as 别名]
# 或者: from sklearn.base import ClusterMixin [as 别名]
def _check_parameters(self):
"""Check if the parameters passed as argument are correct.
Raises
------
ValueError
If the hyper-parameters are incorrect.
"""
if self.metric_diversity not in ['DF', 'Q', 'ratio']:
raise ValueError(
'Diversity metric must be one of the following values:'
' "DF", "Q" or "Ratio"')
try:
getattr(metrics, self.metric_performance)
except AttributeError:
raise ValueError(
"Parameter metric_performance must be a sklearn metrics")
if self.N_ <= 0 or self.J_ <= 0:
raise ValueError("The values of N_ and J_ should be higher than 0"
"N_ = {}, J_= {} ".format(self.N_, self.J_))
if self.N_ < self.J_:
raise ValueError(
"The value of N_ should be greater or equals than J_"
"N_ = {}, J_= {} ".format(self.N_, self.J_))
if self.clustering is not None:
if not isinstance(self.clustering, ClusterMixin):
raise ValueError(
"Parameter clustering must be a sklearn"
" cluster estimator.")
示例4: yield_all_checks
# 需要导入模块: from sklearn import base [as 别名]
# 或者: from sklearn.base import ClusterMixin [as 别名]
def yield_all_checks(name, estimator):
tags = estimator._get_tags()
if "2darray" not in tags["X_types"]:
warnings.warn("Can't test estimator {} which requires input "
" of type {}".format(name, tags["X_types"]),
SkipTestWarning)
return
if tags["_skip_test"]:
warnings.warn("Explicit SKIP via _skip_test tag for estimator "
"{}.".format(name),
SkipTestWarning)
return
yield from _yield_checks(name, estimator)
if is_classifier(estimator):
yield from _yield_classifier_checks(name, estimator)
if is_regressor(estimator):
yield from _yield_regressor_checks(name, estimator)
if hasattr(estimator, 'transform'):
if not tags["allow_variable_length"]:
# Transformer tests ensure that shapes are the same at fit and
# transform time, hence we need to skip them for estimators that
# allow variable-length inputs
yield from _yield_transformer_checks(name, estimator)
if isinstance(estimator, ClusterMixin):
yield from _yield_clustering_checks(name, estimator)
if is_outlier_detector(estimator):
yield from _yield_outliers_checks(name, estimator)
# We are not strict on presence/absence of the 3rd dimension
# yield check_fit2d_predict1d
if not tags["non_deterministic"]:
yield check_methods_subset_invariance
yield check_fit2d_1sample
yield check_fit2d_1feature
yield check_fit1d
yield check_get_params_invariance
yield check_set_params
yield check_dict_unchanged
yield check_dont_overwrite_parameters
yield check_fit_idempotent
if (is_classifier(estimator) or
is_regressor(estimator) or
isinstance(estimator, ClusterMixin)):
if tags["allow_variable_length"]:
yield check_different_length_fit_predict_transform