当前位置: 首页>>代码示例>>Python>>正文


Python sklearn.__version__方法代码示例

本文整理汇总了Python中sklearn.__version__方法的典型用法代码示例。如果您正苦于以下问题:Python sklearn.__version__方法的具体用法?Python sklearn.__version__怎么用?Python sklearn.__version__使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn的用法示例。


在下文中一共展示了sklearn.__version__方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: set_configuration

# 需要导入模块: import sklearn [as 别名]
# 或者: from sklearn import __version__ [as 别名]
def set_configuration():
    # set python version
    config.ExternalDepFound('python', '.'.join([str(x)
                                                for x in sys.version_info]))
    version = mdp.__version__
    if mdp.__revision__:
        version += ', ' + mdp.__revision__
    config.ExternalDepFound('mdp', version)

    # parallel python dependency
    try:
        import pp
        # set pp secret if not there already
        # (workaround for debian patch to pp that disables pp's default password)
        pp_secret = os.getenv('MDP_PP_SECRET') or 'mdp-pp-support-password'
        # module 'user' has been deprecated since python 2.6 and deleted
        # completely as of python 3.0.
        # Basically pp can not work on python 3 at the moment.
        import user
        if not hasattr(user, 'pp_secret'):
            user.pp_secret = pp_secret
    except ImportError, exc:
        config.ExternalDepFailed('parallel_python', exc) 
开发者ID:ME-ICA,项目名称:me-ica,代码行数:25,代码来源:configuration.py

示例2: _get_sklearn_version

# 需要导入模块: import sklearn [as 别名]
# 或者: from sklearn import __version__ [as 别名]
def _get_sklearn_version():  # pragma: no cover
    """ Utility function to decide the version of sklearn.
    PyOD will result in different behaviors with different sklearn version

    Returns
    -------
    sk_learn version : int

    """

    sklearn_version = str(sklearn.__version__)
    if int(sklearn_version.split(".")[1]) < 19 or int(
            sklearn_version.split(".")[1]) > 23:
        raise ValueError("Sklearn version error")

    return int(sklearn_version.split(".")[1]) 
开发者ID:yzhao062,项目名称:pyod,代码行数:18,代码来源:utility.py

示例3: _sklearn_version_21

# 需要导入模块: import sklearn [as 别名]
# 或者: from sklearn import __version__ [as 别名]
def _sklearn_version_21():  # pragma: no cover
    """ Utility function to decide the version of sklearn
    In sklearn 21.0, LOF is changed. Specifically, _decision_function
    is replaced by _score_samples

    Returns
    -------
    sklearn_21_flag : bool
        True if sklearn.__version__ is newer than 0.21.0

    """
    sklearn_version = str(sklearn.__version__)
    if int(sklearn_version.split(".")[1]) > 20:
        return True
    else:
        return False 
开发者ID:yzhao062,项目名称:pyod,代码行数:18,代码来源:utility.py

示例4: __init__

# 需要导入模块: import sklearn [as 别名]
# 或者: from sklearn import __version__ [as 别名]
def __init__(self, params):
        super(ExtraTreesAlgorithm, self).__init__(params)
        logger.debug("ExtraTreesAlgorithm.__init__")

        self.library_version = sklearn.__version__
        self.trees_in_step = additional.get("trees_in_step", 100)
        self.max_steps = additional.get("max_steps", 50)
        self.early_stopping_rounds = additional.get("early_stopping_rounds", 50)
        self.model = ExtraTreesClassifier(
            n_estimators=self.trees_in_step,
            criterion=params.get("criterion", "gini"),
            max_features=params.get("max_features", 0.6),
            min_samples_split=params.get("min_samples_split", 30),
            warm_start=True,
            n_jobs=-1,
            random_state=params.get("seed", 1),
        ) 
开发者ID:mljar,项目名称:mljar-supervised,代码行数:19,代码来源:extra_trees.py

示例5: __init__

# 需要导入模块: import sklearn [as 别名]
# 或者: from sklearn import __version__ [as 别名]
def __init__(self, params):
        super(RandomForestAlgorithm, self).__init__(params)
        logger.debug("RandomForestAlgorithm.__init__")

        self.library_version = sklearn.__version__
        self.trees_in_step = additional.get("trees_in_step", 5)
        self.max_steps = additional.get("max_steps", 3)
        self.early_stopping_rounds = additional.get("early_stopping_rounds", 50)
        self.model = RandomForestClassifier(
            n_estimators=self.trees_in_step,
            criterion=params.get("criterion", "gini"),
            max_features=params.get("max_features", 0.8),
            min_samples_split=params.get("min_samples_split", 4),
            warm_start=True,
            n_jobs=-1,
            random_state=params.get("seed", 1),
        ) 
开发者ID:mljar,项目名称:mljar-supervised,代码行数:19,代码来源:random_forest.py

示例6: save_model

# 需要导入模块: import sklearn [as 别名]
# 或者: from sklearn import __version__ [as 别名]
def save_model(self):

        if self.mlp is not None:

            fname, ext = QtWidgets.QFileDialog.getSaveFileName(
                self,
                "Save mode file",
                "model.sav",
                ".sav",
            )

            base, ext = _ospath.splitext(fname)
            fname = base + ".sav"

            self.train_log["Model"] = fname
            self.train_log["Generated by"] = "Picasso nanoTRON : Train"
            import sklearn
            self.train_log["Scikit-Learn Version"] = sklearn.__version__
            self.train_log["Created on"] = datetime.datetime.now()

            if fname:
                joblib.dump(self.mlp, fname)
                print("Saving complete.")
                info_path = base + ".yaml"
                io.save_info(info_path, [self.train_log]) 
开发者ID:jungmannlab,项目名称:picasso,代码行数:27,代码来源:nanotron.py

示例7: __init__

# 需要导入模块: import sklearn [as 别名]
# 或者: from sklearn import __version__ [as 别名]
def __init__(self, options):
        self.handle_options(options)

        out_params = convert_params(
            options.get('params', {}),
            bools=['with_centering', 'with_scaling'],
            strs=['quantile_range'], 
        )

        if StrictVersion(sklearn_version) < StrictVersion(quantile_range_required_version) and 'quantile_range' in out_params.keys():
            out_params.pop('quantile_range')
            msg = 'The quantile_range option is ignored in this version of scikit-learn ({}): version {} or higher required'
            msg = msg.format(sklearn_version, quantile_range_required_version)
            messages.warn(msg)

        if 'quantile_range' in out_params.keys():
            try:
                out_params['quantile_range'] = tuple(int(i) for i in out_params['quantile_range'].split('-'))
                assert len(out_params['quantile_range']) == 2
            except:
                raise RuntimeError('Syntax Error: quantile_range requires a range, e.g., quantile_range=25-75')

        self.estimator = _RobustScaler(**out_params) 
开发者ID:nccgroup,项目名称:Splunking-Crime,代码行数:25,代码来源:RobustScaler.py

示例8: enable

# 需要导入模块: import sklearn [as 别名]
# 或者: from sklearn import __version__ [as 别名]
def enable(name=None, verbose=True):
    if LooseVersion(sklearn_version) < LooseVersion("0.20.0"):
        raise NotImplementedError("daal4py patches apply  for scikit-learn >= 0.20.0 only ...")
    elif LooseVersion(sklearn_version) > LooseVersion("0.23.1"):
        warn_msg = ("daal4py {daal4py_version} has only been tested " +
                    "with scikit-learn 0.23.1, found version: {sklearn_version}")
        warnings.warn(warn_msg.format(
            daal4py_version=daal4py_version,
            sklearn_version=sklearn_version)
        )

    if name is not None:
        do_patch(name)
    else:
        for key in _mapping:
            do_patch(key)
    if verbose and sys.stderr is not None:
        sys.stderr.write("Intel(R) Data Analytics Acceleration Library (Intel(R) DAAL) solvers for sklearn enabled: "
                         "https://intelpython.github.io/daal4py/sklearn.html\n") 
开发者ID:IntelPython,项目名称:daal4py,代码行数:21,代码来源:dispatcher.py

示例9: get_default_conda_env

# 需要导入模块: import sklearn [as 别名]
# 或者: from sklearn import __version__ [as 别名]
def get_default_conda_env(include_cloudpickle=False):
    """
    :return: The default Conda environment for MLflow Models produced by calls to
             :func:`save_model()` and :func:`log_model()`.
    """
    import sklearn
    pip_deps = None
    if include_cloudpickle:
        import cloudpickle
        pip_deps = ["cloudpickle=={}".format(cloudpickle.__version__)]
    return _mlflow_conda_env(
        additional_conda_deps=[
            "scikit-learn={}".format(sklearn.__version__),
        ],
        additional_pip_deps=pip_deps,
        additional_conda_channels=None
    ) 
开发者ID:mlflow,项目名称:mlflow,代码行数:19,代码来源:sklearn.py

示例10: save

# 需要导入模块: import sklearn [as 别名]
# 或者: from sklearn import __version__ [as 别名]
def save(self, filename: str):
        """
        Saves model to a custom file format
        
        filename : str
            Name of file to save. Don't include filename extensions
            Extensions are added automatically
        
        File format is a zipfile with joblib dump (pickle-like) + dependency metata
        Metadata is checked on load.
        
        Includes validation and metadata to avoid Pickle deserialization gotchas
        See here Alex Gaynor PyCon 2014 talk "Pickles are for Delis"
            for more info on why we introduce this additional check
        """
        if '.zip' in filename:
            raise UserWarning("The file extension '.zip' is automatically added"
                + " to saved models. The name will have redundant extensions")
        sysverinfo = sys.version_info
        meta_data = {
            "python_": f'{sysverinfo[0]}.{sysverinfo[1]}',
            "skl_": sklearn.__version__[:-2],
            "pd_": pd.__version__[:-2],
            "csrg_": cg.__version__[:-2]
        }
        with tempfile.TemporaryDirectory() as temp_dir:
            joblib.dump(self, os.path.join(temp_dir, self.f_model), compress=True)
            with open(os.path.join(temp_dir, self.f_mdata), 'w') as f:
                json.dump(meta_data, f)
            filename = shutil.make_archive(filename, 'zip', temp_dir) 
开发者ID:VHRanger,项目名称:nodevectors,代码行数:32,代码来源:embedders.py

示例11: load

# 需要导入模块: import sklearn [as 别名]
# 或者: from sklearn import __version__ [as 别名]
def load(filename: str):
        """
        Load model from NodeEmbedding model zip file.
        
        filename : str
            full filename of file to load (including extensions)
            The file should be the result of a `save()` call
            
        Loading checks for metadata and raises warnings if pkg versions
        are different than they were when saving the model.
        """
        with tempfile.TemporaryDirectory() as temp_dir:
            shutil.unpack_archive(filename, temp_dir, 'zip')
            model = joblib.load(os.path.join(temp_dir, BaseNodeEmbedder.f_model))
            with open(os.path.join(temp_dir, BaseNodeEmbedder.f_mdata)) as f:
                meta_data = json.load(f)
            # Validate the metadata
            sysverinfo = sys.version_info
            pyver = "{0}.{1}".format(sysverinfo[0], sysverinfo[1])
            if meta_data["python_"] != pyver:
                raise UserWarning(
                    "Invalid python version; {0}, required: {1}".format(
                        pyver, meta_data["python_"]))
            sklver = sklearn.__version__[:-2]
            if meta_data["skl_"] != sklver:
                raise UserWarning(
                    "Invalid sklearn version; {0}, required: {1}".format(
                        sklver, meta_data["skl_"]))
            pdver = pd.__version__[:-2]
            if meta_data["pd_"] != pdver:
                raise UserWarning(
                    "Invalid pandas version; {0}, required: {1}".format(
                        pdver, meta_data["pd_"]))
            csrv = cg.__version__[:-2]
            if meta_data["csrg_"] != csrv:
                raise UserWarning(
                    "Invalid csrgraph version; {0}, required: {1}".format(
                        csrv, meta_data["csrg_"]))
        return model 
开发者ID:VHRanger,项目名称:nodevectors,代码行数:41,代码来源:embedders.py

示例12: get_pandas_status

# 需要导入模块: import sklearn [as 别名]
# 或者: from sklearn import __version__ [as 别名]
def get_pandas_status():
    try:
        import pandas as pd
        return _check_version(pd.__version__, pandas_min_version)
    except ImportError:
        traceback.print_exc()
        return default_status 
开发者ID:tgsmith61591,项目名称:skutil,代码行数:9,代码来源:setup.py

示例13: get_sklearn_status

# 需要导入模块: import sklearn [as 别名]
# 或者: from sklearn import __version__ [as 别名]
def get_sklearn_status():
    try:
        import sklearn as sk
        return _check_version(sk.__version__, sklearn_min_version)
    except ImportError:
        traceback.print_exc()
        return default_status 
开发者ID:tgsmith61591,项目名称:skutil,代码行数:9,代码来源:setup.py

示例14: get_numpy_status

# 需要导入模块: import sklearn [as 别名]
# 或者: from sklearn import __version__ [as 别名]
def get_numpy_status():
    try:
        import numpy as np
        return _check_version(np.__version__, numpy_min_version)
    except ImportError:
        traceback.print_exc()
        return default_status 
开发者ID:tgsmith61591,项目名称:skutil,代码行数:9,代码来源:setup.py

示例15: get_scipy_status

# 需要导入模块: import sklearn [as 别名]
# 或者: from sklearn import __version__ [as 别名]
def get_scipy_status():
    try:
        import scipy as sc
        return _check_version(sc.__version__, scipy_min_version)
    except ImportError:
        traceback.print_exc()
        return default_status 
开发者ID:tgsmith61591,项目名称:skutil,代码行数:9,代码来源:setup.py


注:本文中的sklearn.__version__方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。