本文整理汇总了Python中skipthoughts.eval_sick.evaluate方法的典型用法代码示例。如果您正苦于以下问题:Python eval_sick.evaluate方法的具体用法?Python eval_sick.evaluate怎么用?Python eval_sick.evaluate使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类skipthoughts.eval_sick
的用法示例。
在下文中一共展示了eval_sick.evaluate方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: main
# 需要导入模块: from skipthoughts import eval_sick [as 别名]
# 或者: from skipthoughts.eval_sick import evaluate [as 别名]
def main(unused_argv):
if not FLAGS.data_dir:
raise ValueError("--data_dir is required.")
encoder = encoder_manager.EncoderManager()
# Maybe load unidirectional encoder.
if FLAGS.uni_checkpoint_path:
print("Loading unidirectional model...")
uni_config = configuration.model_config()
encoder.load_model(uni_config, FLAGS.uni_vocab_file,
FLAGS.uni_embeddings_file, FLAGS.uni_checkpoint_path)
# Maybe load bidirectional encoder.
if FLAGS.bi_checkpoint_path:
print("Loading bidirectional model...")
bi_config = configuration.model_config(bidirectional_encoder=True)
encoder.load_model(bi_config, FLAGS.bi_vocab_file, FLAGS.bi_embeddings_file,
FLAGS.bi_checkpoint_path)
if FLAGS.eval_task in ["MR", "CR", "SUBJ", "MPQA"]:
eval_classification.eval_nested_kfold(
encoder, FLAGS.eval_task, FLAGS.data_dir, use_nb=False)
elif FLAGS.eval_task == "SICK":
eval_sick.evaluate(encoder, evaltest=True, loc=FLAGS.data_dir)
elif FLAGS.eval_task == "MSRP":
eval_msrp.evaluate(
encoder, evalcv=True, evaltest=True, use_feats=True, loc=FLAGS.data_dir)
elif FLAGS.eval_task == "TREC":
eval_trec.evaluate(encoder, evalcv=True, evaltest=True, loc=FLAGS.data_dir)
else:
raise ValueError("Unrecognized eval_task: %s" % FLAGS.eval_task)
encoder.close()
示例2: main
# 需要导入模块: from skipthoughts import eval_sick [as 别名]
# 或者: from skipthoughts.eval_sick import evaluate [as 别名]
def main(unused_argv):
if not FLAGS.data_dir:
raise ValueError("--data_dir is required.")
encoder = encoder_manager.EncoderManager()
# Maybe load unidirectional encoder.
if FLAGS.uni_checkpoint_path:
print("Loading unidirectional model...")
uni_config = configuration.model_config()
encoder.load_model(uni_config, FLAGS.uni_vocab_file,
FLAGS.uni_embeddings_file, FLAGS.uni_checkpoint_path)
# Maybe load bidirectional encoder.
if FLAGS.bi_checkpoint_path:
print("Loading bidirectional model...")
bi_config = configuration.model_config(bidirectional_encoder=True)
encoder.load_model(bi_config, FLAGS.bi_vocab_file,
FLAGS.bi_embeddings_file,
FLAGS.bi_checkpoint_path)
if FLAGS.eval_task in ["MR", "CR", "SUBJ", "MPQA"]:
eval_classification.eval_nested_kfold(
encoder, FLAGS.eval_task, FLAGS.data_dir, use_nb=False)
elif FLAGS.eval_task == "SICK":
eval_sick.evaluate(encoder, evaltest=True, loc=FLAGS.data_dir)
elif FLAGS.eval_task == "MSRP":
eval_msrp.evaluate(
encoder, evalcv=True, evaltest=True, use_feats=True,
loc=FLAGS.data_dir)
elif FLAGS.eval_task == "TREC":
eval_trec.evaluate(encoder, evalcv=True, evaltest=True,
loc=FLAGS.data_dir)
else:
raise ValueError("Unrecognized eval_task: %s" % FLAGS.eval_task)
encoder.close()