本文整理汇总了Python中skip_thoughts.skip_thoughts_model.SkipThoughtsModel方法的典型用法代码示例。如果您正苦于以下问题:Python skip_thoughts_model.SkipThoughtsModel方法的具体用法?Python skip_thoughts_model.SkipThoughtsModel怎么用?Python skip_thoughts_model.SkipThoughtsModel使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类skip_thoughts.skip_thoughts_model
的用法示例。
在下文中一共展示了skip_thoughts_model.SkipThoughtsModel方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: build_inputs
# 需要导入模块: from skip_thoughts import skip_thoughts_model [as 别名]
# 或者: from skip_thoughts.skip_thoughts_model import SkipThoughtsModel [as 别名]
def build_inputs(self):
if self.mode == "encode":
# Encode mode doesn't read from disk, so defer to parent.
return super(SkipThoughtsModel, self).build_inputs()
else:
# Replace disk I/O with random Tensors.
self.encode_ids = tf.random_uniform(
[self.config.batch_size, 15],
minval=0,
maxval=self.config.vocab_size,
dtype=tf.int64)
self.decode_pre_ids = tf.random_uniform(
[self.config.batch_size, 15],
minval=0,
maxval=self.config.vocab_size,
dtype=tf.int64)
self.decode_post_ids = tf.random_uniform(
[self.config.batch_size, 15],
minval=0,
maxval=self.config.vocab_size,
dtype=tf.int64)
self.encode_mask = tf.ones_like(self.encode_ids)
self.decode_pre_mask = tf.ones_like(self.decode_pre_ids)
self.decode_post_mask = tf.ones_like(self.decode_post_ids)
示例2: build_graph_from_config
# 需要导入模块: from skip_thoughts import skip_thoughts_model [as 别名]
# 或者: from skip_thoughts.skip_thoughts_model import SkipThoughtsModel [as 别名]
def build_graph_from_config(self, model_config, checkpoint_path):
"""Builds the inference graph from a configuration object.
Args:
model_config: Object containing configuration for building the model.
checkpoint_path: Checkpoint file or a directory containing a checkpoint
file.
Returns:
restore_fn: A function such that restore_fn(sess) loads model variables
from the checkpoint file.
"""
tf.logging.info("Building model.")
model = skip_thoughts_model.SkipThoughtsModel(model_config, mode="encode")
model.build()
saver = tf.train.Saver()
return self._create_restore_fn(checkpoint_path, saver)
示例3: testBuildForTraining
# 需要导入模块: from skip_thoughts import skip_thoughts_model [as 别名]
# 或者: from skip_thoughts.skip_thoughts_model import SkipThoughtsModel [as 别名]
def testBuildForTraining(self):
model = SkipThoughtsModel(self._model_config, mode="train")
model.build()
self._checkModelParameters()
expected_shapes = {
# [batch_size, length]
model.encode_ids: (128, 15),
model.decode_pre_ids: (128, 15),
model.decode_post_ids: (128, 15),
model.encode_mask: (128, 15),
model.decode_pre_mask: (128, 15),
model.decode_post_mask: (128, 15),
# [batch_size, length, word_embedding_dim]
model.encode_emb: (128, 15, 620),
model.decode_pre_emb: (128, 15, 620),
model.decode_post_emb: (128, 15, 620),
# [batch_size, encoder_dim]
model.thought_vectors: (128, 2400),
# [batch_size * length]
model.target_cross_entropy_losses[0]: (1920,),
model.target_cross_entropy_losses[1]: (1920,),
# [batch_size * length]
model.target_cross_entropy_loss_weights[0]: (1920,),
model.target_cross_entropy_loss_weights[1]: (1920,),
# Scalar
model.total_loss: (),
}
self._checkOutputs(expected_shapes)
示例4: testBuildForEval
# 需要导入模块: from skip_thoughts import skip_thoughts_model [as 别名]
# 或者: from skip_thoughts.skip_thoughts_model import SkipThoughtsModel [as 别名]
def testBuildForEval(self):
model = SkipThoughtsModel(self._model_config, mode="eval")
model.build()
self._checkModelParameters()
expected_shapes = {
# [batch_size, length]
model.encode_ids: (128, 15),
model.decode_pre_ids: (128, 15),
model.decode_post_ids: (128, 15),
model.encode_mask: (128, 15),
model.decode_pre_mask: (128, 15),
model.decode_post_mask: (128, 15),
# [batch_size, length, word_embedding_dim]
model.encode_emb: (128, 15, 620),
model.decode_pre_emb: (128, 15, 620),
model.decode_post_emb: (128, 15, 620),
# [batch_size, encoder_dim]
model.thought_vectors: (128, 2400),
# [batch_size * length]
model.target_cross_entropy_losses[0]: (1920,),
model.target_cross_entropy_losses[1]: (1920,),
# [batch_size * length]
model.target_cross_entropy_loss_weights[0]: (1920,),
model.target_cross_entropy_loss_weights[1]: (1920,),
# Scalar
model.total_loss: (),
}
self._checkOutputs(expected_shapes)
示例5: testBuildForEncode
# 需要导入模块: from skip_thoughts import skip_thoughts_model [as 别名]
# 或者: from skip_thoughts.skip_thoughts_model import SkipThoughtsModel [as 别名]
def testBuildForEncode(self):
model = SkipThoughtsModel(self._model_config, mode="encode")
model.build()
# Test feeding a batch of word embeddings to get skip thought vectors.
encode_emb = np.random.rand(64, 15, 620)
encode_mask = np.ones((64, 15), dtype=np.int64)
feed_dict = {model.encode_emb: encode_emb, model.encode_mask: encode_mask}
expected_shapes = {
# [batch_size, encoder_dim]
model.thought_vectors: (64, 2400),
}
self._checkOutputs(expected_shapes, feed_dict)
示例6: main
# 需要导入模块: from skip_thoughts import skip_thoughts_model [as 别名]
# 或者: from skip_thoughts.skip_thoughts_model import SkipThoughtsModel [as 别名]
def main(unused_argv):
if not FLAGS.input_file_pattern:
raise ValueError("--input_file_pattern is required.")
if not FLAGS.train_dir:
raise ValueError("--train_dir is required.")
model_config = configuration.model_config(
input_file_pattern=FLAGS.input_file_pattern)
training_config = configuration.training_config()
tf.logging.info("Building training graph.")
g = tf.Graph()
with g.as_default():
model = skip_thoughts_model.SkipThoughtsModel(model_config, mode="train")
model.build()
learning_rate = _setup_learning_rate(training_config, model.global_step)
optimizer = tf.train.AdamOptimizer(learning_rate)
train_tensor = tf.contrib.slim.learning.create_train_op(
total_loss=model.total_loss,
optimizer=optimizer,
global_step=model.global_step,
clip_gradient_norm=training_config.clip_gradient_norm)
saver = tf.train.Saver()
tf.contrib.slim.learning.train(
train_op=train_tensor,
logdir=FLAGS.train_dir,
graph=g,
global_step=model.global_step,
number_of_steps=training_config.number_of_steps,
save_summaries_secs=training_config.save_summaries_secs,
saver=saver,
save_interval_secs=training_config.save_model_secs)
示例7: main
# 需要导入模块: from skip_thoughts import skip_thoughts_model [as 别名]
# 或者: from skip_thoughts.skip_thoughts_model import SkipThoughtsModel [as 别名]
def main(unused_argv):
if not FLAGS.input_file_pattern:
raise ValueError("--input_file_pattern is required.")
if not FLAGS.train_dir:
raise ValueError("--train_dir is required.")
model_config = configuration.model_config(
input_file_pattern=FLAGS.input_file_pattern)
training_config = configuration.training_config()
tf.logging.info("Building training graph.")
g = tf.Graph()
with g.as_default():
model = skip_thoughts_model.SkipThoughtsModel(model_config,
mode="train")
model.build()
learning_rate = _setup_learning_rate(training_config, model.global_step)
optimizer = tf.train.AdamOptimizer(learning_rate)
train_tensor = tf.contrib.slim.learning.create_train_op(
total_loss=model.total_loss,
optimizer=optimizer,
global_step=model.global_step,
clip_gradient_norm=training_config.clip_gradient_norm)
saver = tf.train.Saver()
tf.contrib.slim.learning.train(
train_op=train_tensor,
logdir=FLAGS.train_dir,
graph=g,
global_step=model.global_step,
number_of_steps=training_config.number_of_steps,
save_summaries_secs=training_config.save_summaries_secs,
saver=saver,
save_interval_secs=training_config.save_model_secs)