本文整理汇总了Python中skip_thoughts.skip_thoughts_encoder.SkipThoughtsEncoder方法的典型用法代码示例。如果您正苦于以下问题:Python skip_thoughts_encoder.SkipThoughtsEncoder方法的具体用法?Python skip_thoughts_encoder.SkipThoughtsEncoder怎么用?Python skip_thoughts_encoder.SkipThoughtsEncoder使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类skip_thoughts.skip_thoughts_encoder
的用法示例。
在下文中一共展示了skip_thoughts_encoder.SkipThoughtsEncoder方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: load_model
# 需要导入模块: from skip_thoughts import skip_thoughts_encoder [as 别名]
# 或者: from skip_thoughts.skip_thoughts_encoder import SkipThoughtsEncoder [as 别名]
def load_model(self, model_config, vocabulary_file, embedding_matrix_file,
checkpoint_path):
"""Loads a skip-thoughts model.
Args:
model_config: Object containing parameters for building the model.
vocabulary_file: Path to vocabulary file containing a list of newline-
separated words where the word id is the corresponding 0-based index in
the file.
embedding_matrix_file: Path to a serialized numpy array of shape
[vocab_size, embedding_dim].
checkpoint_path: SkipThoughtsModel checkpoint file or a directory
containing a checkpoint file.
"""
tf.logging.info("Reading vocabulary from %s", vocabulary_file)
with tf.gfile.GFile(vocabulary_file, mode="r") as f:
lines = list(f.readlines())
reverse_vocab = [line.decode("utf-8").strip() for line in lines]
tf.logging.info("Loaded vocabulary with %d words.", len(reverse_vocab))
tf.logging.info("Loading embedding matrix from %s", embedding_matrix_file)
# Note: tf.gfile.GFile doesn't work here because np.load() calls f.seek()
# with 3 arguments.
embedding_matrix = np.load(embedding_matrix_file)
tf.logging.info("Loaded embedding matrix with shape %s",
embedding_matrix.shape)
word_embeddings = collections.OrderedDict(
zip(reverse_vocab, embedding_matrix))
g = tf.Graph()
with g.as_default():
encoder = skip_thoughts_encoder.SkipThoughtsEncoder(word_embeddings)
restore_model = encoder.build_graph_from_config(model_config,
checkpoint_path)
sess = tf.Session(graph=g)
restore_model(sess)
self.encoders.append(encoder)
self.sessions.append(sess)
示例2: load_model
# 需要导入模块: from skip_thoughts import skip_thoughts_encoder [as 别名]
# 或者: from skip_thoughts.skip_thoughts_encoder import SkipThoughtsEncoder [as 别名]
def load_model(self, model_config, vocabulary_file, embedding_matrix_file,
checkpoint_path):
"""Loads a skip-thoughts model.
Args:
model_config: Object containing parameters for building the model.
vocabulary_file: Path to vocabulary file containing a list of newline-
separated words where the word id is the corresponding 0-based index in
the file.
embedding_matrix_file: Path to a serialized numpy array of shape
[vocab_size, embedding_dim].
checkpoint_path: SkipThoughtsModel checkpoint file or a directory
containing a checkpoint file.
"""
tf.logging.info("Reading vocabulary from %s", vocabulary_file)
with tf.gfile.GFile(vocabulary_file, mode="r") as f:
lines = list(f.readlines())
reverse_vocab = [line.decode("utf-8").strip() for line in lines]
tf.logging.info("Loaded vocabulary with %d words.", len(reverse_vocab))
tf.logging.info("Loading embedding matrix from %s", embedding_matrix_file)
# Note: tf.gfile.GFile doesn't work here because np.load() calls f.seek()
# with 3 arguments.
with open(embedding_matrix_file, "r") as f:
embedding_matrix = np.load(f)
tf.logging.info("Loaded embedding matrix with shape %s",
embedding_matrix.shape)
word_embeddings = collections.OrderedDict(
zip(reverse_vocab, embedding_matrix))
g = tf.Graph()
with g.as_default():
encoder = skip_thoughts_encoder.SkipThoughtsEncoder(word_embeddings)
restore_model = encoder.build_graph_from_config(model_config,
checkpoint_path)
sess = tf.Session(graph=g)
restore_model(sess)
self.encoders.append(encoder)
self.sessions.append(sess)
示例3: load_model
# 需要导入模块: from skip_thoughts import skip_thoughts_encoder [as 别名]
# 或者: from skip_thoughts.skip_thoughts_encoder import SkipThoughtsEncoder [as 别名]
def load_model(self, model_config, vocabulary_file, embedding_matrix_file,
checkpoint_path):
"""Loads a skip-thoughts model.
Args:
model_config: Object containing parameters for building the model.
vocabulary_file: Path to vocabulary file containing a list of newline-
separated words where the word id is the corresponding 0-based index in
the file.
embedding_matrix_file: Path to a serialized numpy array of shape
[vocab_size, embedding_dim].
checkpoint_path: SkipThoughtsModel checkpoint file or a directory
containing a checkpoint file.
"""
tf.logging.info("Reading vocabulary from %s", vocabulary_file)
with tf.gfile.GFile(vocabulary_file, mode="rb") as f:
lines = list(f.readlines())
reverse_vocab = [line.decode("utf-8").strip() for line in lines]
tf.logging.info("Loaded vocabulary with %d words.", len(reverse_vocab))
tf.logging.info("Loading embedding matrix from %s", embedding_matrix_file)
# Note: tf.gfile.GFile doesn't work here because np.load() calls f.seek()
# with 3 arguments.
embedding_matrix = np.load(embedding_matrix_file)
tf.logging.info("Loaded embedding matrix with shape %s",
embedding_matrix.shape)
word_embeddings = collections.OrderedDict(
zip(reverse_vocab, embedding_matrix))
g = tf.Graph()
with g.as_default():
encoder = skip_thoughts_encoder.SkipThoughtsEncoder(word_embeddings)
restore_model = encoder.build_graph_from_config(model_config,
checkpoint_path)
sess = tf.Session(graph=g)
restore_model(sess)
self.encoders.append(encoder)
self.sessions.append(sess)