本文整理汇总了Python中skimage.util.img_as_float方法的典型用法代码示例。如果您正苦于以下问题:Python util.img_as_float方法的具体用法?Python util.img_as_float怎么用?Python util.img_as_float使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类skimage.util
的用法示例。
在下文中一共展示了util.img_as_float方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: pyramid_expand_3d
# 需要导入模块: from skimage import util [as 别名]
# 或者: from skimage.util import img_as_float [as 别名]
def pyramid_expand_3d(volume, upscale=2, sigma=None, order=1, mode='reflect', cval=0):
_check_factor(upscale)
#_check_float32(volume)
#volume=img_as_float(volume)
volume=volume.astype('float64') # /(12641.6) #
x = volume.shape[0]
y = volume.shape[1]
z = volume.shape[2]
out_x = math.ceil(upscale * x)
out_y = math.ceil(upscale * y)
out_z = math.ceil(upscale * z)
if sigma is None:
# automatically determine sigma which covers > 99% of distribution
sigma = 2 * upscale / 6.0
start_time = time.time()
resized = resize(volume, (out_x, out_y, out_z), order=order, mode=mode, cval=cval)
start_time = time.time()
out = _smooth_3d(resized, sigma, mode, cval)
# I want it to be float32
start_time = time.time()
out=out.astype('float32')
return out
示例2: get_resized_image
# 需要导入模块: from skimage import util [as 别名]
# 或者: from skimage.util import img_as_float [as 别名]
def get_resized_image(file, ratio):
img = util.img_as_float(io.imread(file))
if len(img.shape) >= 3 and img.shape[2] == 4:
img = color.rgba2rgb(img)
if len(img.shape) == 2:
img = color.gray2rgb(img)
eimg = filters.sobel(color.rgb2gray(img))
width = img.shape[1]
height = img.shape[0]
mode, rm_paths = get_lines_to_remove((width, height), ratio)
if mode:
logger.debug("Carving %s %s paths ", rm_paths, mode)
outh = transform.seam_carve(img, eimg, mode, rm_paths)
return outh
else:
return img
示例3: __call__
# 需要导入模块: from skimage import util [as 别名]
# 或者: from skimage.util import img_as_float [as 别名]
def __call__(self, images):
image_sizes = np.array([list(img.shape[:2]) for img in images])
scale_crop_mtx = _compute_scale_and_crop_matrices(image_sizes, self.crop_size, self.padding, self.random_crop)
aug_xf = self.aug.aug_xforms(len(images), self.crop_size)
scale_crop_aug_xf = augmentation.cat_nx2x3(aug_xf, scale_crop_mtx)
colour_matrix, colour_offset = self.aug.aug_colour_xforms(len(images))
cutout_flags, cutout_lower, cutout_upper = self.aug.aug_cutouts(len(images), self.crop_size)
result = []
for i, img in enumerate(images):
img = cv2.warpAffine(img, scale_crop_aug_xf[i, :, :], self.crop_size[::-1], borderValue=self.border_value,
borderMode=cv2.BORDER_REFLECT_101)
img = img_as_float(img).astype(np.float32)
img = (img - self.mean[None, None, :]) / self.std[None, None, :]
img = np.tensordot(img, colour_matrix[i, :, :], [[2], [1]]) + colour_offset[i, None, None, :]
if cutout_flags is not None and cutout_flags[i]:
img[cutout_lower[i, 0]:cutout_upper[i, 0], cutout_lower[i, 1]:cutout_upper[i, 1], :] = 0.0
result.append(img)
return (result,)
示例4: em_G_D_002
# 需要导入模块: from skimage import util [as 别名]
# 或者: from skimage.util import img_as_float [as 别名]
def em_G_D_002(x, scale=4, upsample=False):
x = img_as_float(x)
mu, sigma = 0, 3
noise = np.random.normal(mu, sigma*0.05, x.shape)
x = np.clip(x + noise, 0, 1)
x_down = npzoom(x, 1/scale, order=1)
x_up = npzoom(x_down, scale, order=1)
return x_down, x_up
示例5: captcha_draw
# 需要导入模块: from skimage import util [as 别名]
# 或者: from skimage.util import img_as_float [as 别名]
def captcha_draw(label, fonts, dir_path, pic_id):
# width, height = 512, 48
# size_cha = random.randint(24, 48) # 字符大小
# derx = random.randint(0, 16)
# im = Image.new(mode='L', size=(width, height), color='white') # color 背景颜色,size 图片大小
# drawer = ImageDraw.Draw(im)
# font = ImageFont.truetype(random.choice(fonts), size_cha)
# drawer.text(xy=(derx, 0), text=label, font=font, fill='black') #text 内容,font 字体(包括大小)
# # im.show()
# write2file(dir_path, label, im)
width, height = 32, 32
size_cha = random.randint(16, 28) # 字符大小
derx = random.randint(0, max(width-size_cha-10, 0))
dery = random.randint(0, max(height-size_cha-10, 0))
im = Image.new(mode='L', size=(width, height), color='white') # color 背景颜色,size 图片大小
drawer = ImageDraw.Draw(im)
font = ImageFont.truetype(random.choice(fonts), size_cha)
drawer.text(xy=(derx, dery), text=label, font=font, fill='black') #text 内容,font 字体(包括大小)
# if label != ' ' and (img_as_float(im) == np.ones((48, 48))).all():
# # in case the label is not in this font, then the image will be all white
# return 0
im = im.convert('RGBA')
max_angle = 45 # to be tuned
angle = random.randint(-max_angle, max_angle)
im = im.rotate(angle, Image.BILINEAR, expand=0)
fff = Image.new('RGBA', im.size, (255,)*4)
im = Image.composite(im, fff, im)
# if random.random() < 0.5:
# im = Image.fromarray(grey_erosion(im, size=(2, 2))) # erosion
# if random.random() < 0.5:
# im = Image.fromarray((random_noise(img_as_float(im), mode='s&p')*255).astype(np.uint8))
# im = im.filter(ImageFilter.GaussianBlur(radius=random.random()))
# im.show()
write2file(dir_path, label, im, pic_id)
return 1
示例6: get_saliency_ft
# 需要导入模块: from skimage import util [as 别名]
# 或者: from skimage.util import img_as_float [as 别名]
def get_saliency_ft(img_path):
# Saliency map calculation based on:
img = skimage.io.imread(img_path)
img_rgb = img_as_float(img)
img_lab = skimage.color.rgb2lab(img_rgb)
mean_val = np.mean(img_rgb,axis=(0,1))
kernel_h = (1.0/16.0) * np.array([[1,4,6,4,1]])
kernel_w = kernel_h.transpose()
blurred_l = scipy.signal.convolve2d(img_lab[:,:,0],kernel_h,mode='same')
blurred_a = scipy.signal.convolve2d(img_lab[:,:,1],kernel_h,mode='same')
blurred_b = scipy.signal.convolve2d(img_lab[:,:,2],kernel_h,mode='same')
blurred_l = scipy.signal.convolve2d(blurred_l,kernel_w,mode='same')
blurred_a = scipy.signal.convolve2d(blurred_a,kernel_w,mode='same')
blurred_b = scipy.signal.convolve2d(blurred_b,kernel_w,mode='same')
im_blurred = np.dstack([blurred_l,blurred_a,blurred_b])
sal = np.linalg.norm(mean_val - im_blurred,axis = 2)
sal_max = np.max(sal)
sal_min = np.min(sal)
sal = 255 * ((sal - sal_min) / (sal_max - sal_min))
return sal
示例7: generate
# 需要导入模块: from skimage import util [as 别名]
# 或者: from skimage.util import img_as_float [as 别名]
def generate(im, bb, ads, num=1, mode='bb'):
logger.info("Generate from %s", im)
abs_path = os.path.abspath(im)
rem, _ = os.path.split(abs_path)
rem, p2 = os.path.split(rem)
rem, p1 = os.path.split(rem)
out = "{}_{}".format(p1, p2)
images = [util.img_as_float(io.imread(im)) for i in range(0, num)]
# remove alpha channel
if len(images[0].shape) >= 3 and images[0].shape[2] == 4:
logger.debug("Removed alpha from image")
images = [color.rgba2rgb(img) for img in images]
with open(bb) as bbf:
boxes = json.load(bbf)
if mode == "mixed":
generate_mixed(images, boxes, ads, out)
return
if mode == "inter":
generate_interstitial(images, ads, out)
return
if mode in ["bb", "bb+logo"]:
generate_bb(images, boxes, ads, out, mode)
return
if mode == "copy":
generate_copy(images, boxes, out)
return
if mode == "bg":
generate_background(images, ads, boxes, out)
return
示例8: pyramid_expand
# 需要导入模块: from skimage import util [as 别名]
# 或者: from skimage.util import img_as_float [as 别名]
def pyramid_expand(image, upscale=2, sigma=None, order=1, mode='reflect', cval=0):
"""Upsample and then smooth image.
Parameters
----------
image : array
Input image.
upscale : float, optional
Upscale factor.
sigma : float, optional
Sigma for Gaussian filter. Default is `2 * upscale / 6.0` which
corresponds to a filter mask twice the size of the scale factor that
covers more than 99% of the Gaussian distribution.
order : int, optional
Order of splines used in interpolation of upsampling. See
`skimage.transform.warp` for detail.
mode : {'reflect', 'constant', 'edge', 'symmetric', 'wrap'}, optional
The mode parameter determines how the array borders are handled, where
cval is the value when mode is equal to 'constant'.
cval : float, optional
Value to fill past edges of input if mode is 'constant'.
Returns
-------
out : array
Upsampled and smoothed float image.
References
----------
.. [1] http://web.mit.edu/persci/people/adelson/pub_pdfs/pyramid83.pdf
"""
_check_factor(upscale)
image = img_as_float(image)
rows = image.shape[0]
cols = image.shape[1]
out_rows = math.ceil(upscale * rows)
out_cols = math.ceil(upscale * cols)
if sigma is None:
# automatically determine sigma which covers > 99% of distribution
sigma = 2 * upscale / 6.0
resized = resize(image, (out_rows, out_cols), order=order, mode=mode, cval=cval)
out = _smooth(resized, sigma, mode, cval)
return out
示例9: load_images
# 需要导入模块: from skimage import util [as 别名]
# 或者: from skimage.util import img_as_float [as 别名]
def load_images(path, suffixes=('jpg', 'gif', 'png', 'bmp'), points_too=False):
"""load an image set from a directory.
Load all images in a directory as float grayscale. Optionally
if MATLAB 'points' files are present (as in the published RASL
data sets[1]), read and return those. These give coordinates of
corresponding points on the batch of images, eg, the outside eye
corners in facial images.
Parameters
----------
path : string
file path to image directory
suffixes : list of string
allowable image suffixes
points_too : bool
if true, read and return any "*.mat" files that are present
Returns
-------
images : list[100] of ndarray(h,v)
dummy images as ndarrays
bounds : list[100] of ndarray(2, 2)
coordinates of eye corner points as columns
References
----------
.. [1] http://perception.csl.illinois.edu/matrix-rank/rasl.html#Code
"""
images = [img_as_float(skio.imread(os.path.join(path, fname), as_grey=True))
for fname in os.listdir(path)
if fname.split('.')[-1] in suffixes]
shapes = np.array([image.shape for image in images])
if np.all(shapes == shapes[0, :]):
print("loaded {} {}x{} images".format(
len(images), images[0].shape[0], images[0].shape[1]))
else:
print("loaded {} images with sizes ranging {},{} -- {},{}".format(
len(images), np.min(shapes[:, 0]), np.min(shapes[:, 1]),
np.max(shapes[:, 0]), np.max(shapes[:, 1])))
if points_too:
points = [scio.loadmat(os.path.join(path, fname))['points']
for fname in os.listdir(path) if fname.endswith('.mat')]
return images, points
else:
return images