当前位置: 首页>>代码示例>>Python>>正文


Python transform.estimate_transform方法代码示例

本文整理汇总了Python中skimage.transform.estimate_transform方法的典型用法代码示例。如果您正苦于以下问题:Python transform.estimate_transform方法的具体用法?Python transform.estimate_transform怎么用?Python transform.estimate_transform使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在skimage.transform的用法示例。


在下文中一共展示了transform.estimate_transform方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: lfw_imgs

# 需要导入模块: from skimage import transform [as 别名]
# 或者: from skimage.transform import estimate_transform [as 别名]
def lfw_imgs(alignment):
    if alignment == 'landmarks':
        dataset = dp.dataset.LFW('original')
        imgs = dataset.imgs
        landmarks = dataset.landmarks('68')
        n_landmarks = 68
        landmarks_mean = np.mean(landmarks, axis=0)
        landmarks_mean = np.array([landmarks_mean[:n_landmarks],
                                   landmarks_mean[n_landmarks:]])
        aligned_imgs = []
        for img, points in zip(imgs, landmarks):
            points = np.array([points[:n_landmarks], points[n_landmarks:]])
            transf = transform.estimate_transform('similarity',
                                                  landmarks_mean.T, points.T)
            img = img / 255.
            img = transform.warp(img, transf, order=3)
            img = np.round(img*255).astype(np.uint8)
            aligned_imgs.append(img)
        imgs = np.array(aligned_imgs)
    else:
        dataset = dp.dataset.LFW(alignment)
        imgs = dataset.imgs
    return imgs 
开发者ID:andersbll,项目名称:autoencoding_beyond_pixels,代码行数:25,代码来源:lfw.py

示例2: fit

# 需要导入模块: from skimage import transform [as 别名]
# 或者: from skimage.transform import estimate_transform [as 别名]
def fit(self, data):
        """
    Return the best 2D similarity transform from the points given in data.

    data: N sets of similar corresponding triangles.
        3 indices for a triangle in ref
        and the 3 indices for the corresponding triangle in target;
        arranged in a (N, 3, 2) array.
        """
        d1, d2, d3 = data.shape
        s, d = data.reshape(d1 * d2, d3).T
        approx_t = estimate_transform(
            "similarity", self.source[s], self.target[d]
        )
        return approx_t 
开发者ID:toros-astro,项目名称:astroalign,代码行数:17,代码来源:astroalign.py

示例3: test_find_transform_givensources

# 需要导入模块: from skimage import transform [as 别名]
# 或者: from skimage.transform import estimate_transform [as 别名]
def test_find_transform_givensources(self):
        from skimage.transform import estimate_transform, matrix_transform

        source = np.array(
            [
                [1.4, 2.2],
                [5.3, 1.0],
                [3.7, 1.5],
                [10.1, 9.6],
                [1.3, 10.2],
                [7.1, 2.0],
            ]
        )
        nsrc = source.shape[0]
        scale = 1.5  # scaling parameter
        alpha = np.pi / 8.0  # rotation angle
        mm = scale * np.array(
            [[np.cos(alpha), -np.sin(alpha)], [np.sin(alpha), np.cos(alpha)]]
        )
        tx, ty = 2.0, 1.0  # translation parameters
        transl = np.array([nsrc * [tx], nsrc * [ty]])
        dest = (mm.dot(source.T) + transl).T
        t_true = estimate_transform("similarity", source, dest)

        # disorder dest points so they don't match the order of source
        np.random.shuffle(dest)

        t, (src_pts, dst_pts) = aa.find_transform(source, dest)
        self.assertLess(t_true.scale - t.scale, 1e-10)
        self.assertLess(t_true.rotation - t.rotation, 1e-10)
        self.assertLess(
            np.linalg.norm(t_true.translation - t.translation), 1e-10
        )
        self.assertEqual(src_pts.shape[0], dst_pts.shape[0])
        self.assertEqual(src_pts.shape[1], 2)
        self.assertEqual(dst_pts.shape[1], 2)
        dst_pts_test = matrix_transform(src_pts, t.params)
        self.assertLess(np.linalg.norm(dst_pts_test - dst_pts), 1e-10) 
开发者ID:toros-astro,项目名称:astroalign,代码行数:40,代码来源:test_align.py

示例4: gen_data

# 需要导入模块: from skimage import transform [as 别名]
# 或者: from skimage.transform import estimate_transform [as 别名]
def gen_data(name):
    reftracker = scio.loadmat('data/images_tracker.00047.mat')['tracker']
    desttracker = scio.loadmat('data/images_tracker/'+name+'.mat')['tracker']
    refpos = np.floor(np.mean(reftracker, 0))
    xxc, yyc = np.meshgrid(np.arange(1, 1801, dtype=np.int), np.arange(1, 2001, dtype=np.int))
    #normalize x and y channels
    xxc = (xxc - 600 - refpos[0]) * 1.0 / 600
    yyc = (yyc - 600 - refpos[1]) * 1.0 / 600
    maskimg = Image.open('data/meanmask.png')
    maskc = np.array(maskimg, dtype=np.float)
    maskc = np.pad(maskc, (600, 600), 'minimum')
    # warp is an inverse transform, and so src and dst must be reversed here
    tform = transform.estimate_transform('affine', desttracker + 600, reftracker + 600)
    
    img_data = skio.imread('data/images_data/'+name+'.jpg')
    # save org mat
    warpedxx = transform.warp(xxc, tform, output_shape=xxc.shape)
    warpedyy = transform.warp(yyc, tform, output_shape=xxc.shape)
    warpedmask = transform.warp(maskc, tform, output_shape=xxc.shape)
    warpedxx = warpedxx[600:1400, 600:1200, :]
    warpedyy = warpedyy[600:1400, 600:1200, :]
    warpedmask = warpedmask[600:1400, 600:1200, :]
    img_h, img_w, _ = img_data.shape
    mat = np.zeros((img_h, img_w, 6), dtype=np.float)
    mat[:, :, 0] = (img_data[2] * 1.0 - 104.008) / 255
    mat[:, :, 1] = (img_data[1] * 1.0 - 116.669) / 255
    mat[:, :, 2] = (img_data[0] * 1.0 - 122.675) / 255
    scio.savemat('portraitFCN_data/' + name + '.mat', {'img':mat})
    mat_plus = np.zeros((img_h, img_w, 6), dtype=np.float)
    mat_plus[:, :, 0:3] = mat
    mat_plus[:, :, 3] = warpedxx
    mat_plus[:, :, 4] = warpedyy
    mat_plus[:, :, 5] = warpedmask 
开发者ID:PetroWu,项目名称:AutoPortraitMatting,代码行数:35,代码来源:preprocess.py

示例5: estimate_coordinate_transform

# 需要导入模块: from skimage import transform [as 别名]
# 或者: from skimage.transform import estimate_transform [as 别名]
def estimate_coordinate_transform(source, target, method, **method_kwargs):
    """Calculates a transformation from a source list of coordinates to a
    target list of coordinates.

    Parameters
    ----------
    source : Nx2 array
        (x, y) coordinate pairs from source image.
    target : Nx2 array
        (x, y) coordinate pairs from target image. Must be same shape as
        'source'.
    method : string, optional
        Method to use for transform estimation.
    **method_kwargs : optional
        Additional arguments can be passed in specific to the particular
        method. For example, 'order' for a polynomial transform estimation.

    Returns
    -------
    transform : skimage.transform._geometric.GeometricTransform
        An skimage transform object.

    See Also
    --------
    skimage.transform.estimate_transform

    """

    return tf.estimate_transform(method, source, target, **method_kwargs) 
开发者ID:losonczylab,项目名称:sima,代码行数:31,代码来源:__init__.py

示例6: check_if_ok

# 需要导入模块: from skimage import transform [as 别名]
# 或者: from skimage.transform import estimate_transform [as 别名]
def check_if_ok(self, numstars):
        "Helper function with common test code for 3, 4, 5, and 6 stars"
        from skimage.transform import estimate_transform, matrix_transform

        if numstars > 6:
            raise NotImplementedError

        # x and y of stars in the ref frame (int's)
        self.star_refx = np.array([100, 120, 400, 400, 200, 200])[:numstars]
        self.star_refy = np.array([150, 200, 200, 320, 210, 350])[:numstars]
        self.num_stars = numstars
        # Fluxes of stars
        self.star_f = np.array(numstars * [700.0])

        (
            self.image,
            self.image_ref,
            self.star_ref_pos,
            self.star_new_pos,
        ) = simulate_image_pair(
            shape=(self.h, self.w),
            translation=(self.x_offset, self.y_offset),
            rot_angle_deg=50.0,
            num_stars=self.num_stars,
            star_refx=self.star_refx,
            star_refy=self.star_refy,
            star_flux=self.star_f,
        )

        source = self.star_ref_pos
        dest = self.star_new_pos.copy()
        t_true = estimate_transform("similarity", source, dest)

        # disorder dest points so they don't match the order of source
        np.random.shuffle(dest)

        t, (src_pts, dst_pts) = aa.find_transform(source, dest)
        self.assertLess(t_true.scale - t.scale, 1e-10)
        self.assertLess(t_true.rotation - t.rotation, 1e-10)
        self.assertLess(
            np.linalg.norm(t_true.translation - t.translation), 1.0
        )
        self.assertEqual(src_pts.shape[0], dst_pts.shape[0])
        self.assertLessEqual(src_pts.shape[0], source.shape[0])
        self.assertEqual(src_pts.shape[1], 2)
        self.assertEqual(dst_pts.shape[1], 2)
        dst_pts_test = matrix_transform(src_pts, t.params)
        self.assertLess(np.linalg.norm(dst_pts_test - dst_pts), 1.0) 
开发者ID:toros-astro,项目名称:astroalign,代码行数:50,代码来源:test_align.py

示例7: process

# 需要导入模块: from skimage import transform [as 别名]
# 或者: from skimage.transform import estimate_transform [as 别名]
def process(self, input, image_info = None):
        ''' process image with crop operation.
        Args:
            input: (h,w,3) array or str(image path). image value range:1~255. 
            image_info(optional): the bounding box information of faces. if None, will use dlib to detect face. 

        Returns:
            pos: the 3D position map. (256, 256, 3).
        '''
        if isinstance(input, str):
            try:
                image = imread(input)
            except IOError:
                print("error opening file: ", input)
                return None
        else:
            image = input

        if image.ndim < 3:
            image = np.tile(image[:,:,np.newaxis], [1,1,3])


        if np.max(image_info.shape) > 4: # key points to get bounding box
            kpt = image_info
            if kpt.shape[0] > 3:
                kpt = kpt.T
            left = np.min(kpt[0, :]); right = np.max(kpt[0, :]); 
            top = np.min(kpt[1,:]); bottom = np.max(kpt[1,:])
        else:  # bounding box
            bbox = image_info
            left = bbox[0]; right = bbox[1]; top = bbox[2]; bottom = bbox[3]
        old_size = (right - left + bottom - top)/2
        center = np.array([right - (right - left) / 2.0, bottom - (bottom - top) / 2.0])
        size = int(old_size*1.6)

        # crop image
        src_pts = np.array([[center[0]-size/2, center[1]-size/2], [center[0] - size/2, center[1]+size/2], [center[0]+size/2, center[1]-size/2]])
        DST_PTS = np.array([[0,0], [0,self.resolution_inp - 1], [self.resolution_inp - 1, 0]])
        tform = estimate_transform('similarity', src_pts, DST_PTS)
        
        image = image/255.
        cropped_image = warp(image, tform.inverse, output_shape=(self.resolution_inp, self.resolution_inp))
        # run our net
        #st = time()
        cropped_image = torch.from_numpy(cropped_image[np.newaxis, ...].transpose(0,3,1,2).astype(np.float32)).cuda()
        cropped_pos = self.net_forward(cropped_image)*self.resolution_inp*1.1
        #print 'net time:', time() - st

        # restore 
        cropped_vertices = np.reshape(cropped_pos, [-1, 3]).T
        z = cropped_vertices[2,:].copy()/tform.params[0,0]
        cropped_vertices[2,:] = 1
        vertices = np.dot(np.linalg.inv(tform.params), cropped_vertices)
        vertices = np.vstack((vertices[:2,:], z))
        pos = np.reshape(vertices.T, [self.resolution_op, self.resolution_op, 3])
        
        return pos 
开发者ID:tensorboy,项目名称:centerpose,代码行数:59,代码来源:prnet.py

示例8: process

# 需要导入模块: from skimage import transform [as 别名]
# 或者: from skimage.transform import estimate_transform [as 别名]
def process(self, image, bbox):
        ''' process image with crop operation.
        Args:
            input: (h,w,3) array or str(image path). image value range:1~255.
            image_info(optional): the bounding box information of faces. if None, will use dlib to detect face.

        Returns:
            pos: the 3D position map. (256, 256, 3).
        '''
        if image.ndim < 3:
            image = np.tile(image[:, :, np.newaxis], [1, 1, 3])

        left = bbox[0];
        right = bbox[2]
        top = bbox[1]
        bottom = bbox[3]
        old_size = (right - left + bottom - top) / 2
        center = np.array([right - (right - left) / 2.0, bottom - (bottom - top) / 2.0 + old_size * 0.14])
        size = int(old_size * 1.318)

        # crop image
        src_pts = np.array([[center[0] - size / 2, center[1] - size / 2], [center[0] - size / 2, center[1] + size / 2],
                            [center[0] + size / 2, center[1] - size / 2]])
        DST_PTS = np.array([[0, 0], [0, self.resolution_inp - 1], [self.resolution_inp - 1, 0]])
        tform = estimate_transform('similarity', src_pts, DST_PTS)

        image = image / 255.
        cropped_image = warp(image, tform.inverse, output_shape=(self.resolution_inp, self.resolution_inp))

        # run our net
        # st = time()
        cropped_pos = self.net_forward(cropped_image)
        # print 'net time:', time() - st
        crop_pos = cropped_pos.copy()
        # restore
        cropped_vertices = np.reshape(cropped_pos, [-1, 3]).T

        z = cropped_vertices[2, :].copy() / tform.params[0, 0]
        cropped_vertices[2, :] = 1
        vertices = np.dot(np.linalg.inv(tform.params), cropped_vertices)
        vertices = np.vstack((vertices[:2, :], z))
        pos = np.reshape(vertices.T, [self.resolution_op, self.resolution_op, 3])

        return pos 
开发者ID:bleakie,项目名称:MaskInsightface,代码行数:46,代码来源:api.py


注:本文中的skimage.transform.estimate_transform方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。