本文整理汇总了Python中skimage.segmentation.mark_boundaries方法的典型用法代码示例。如果您正苦于以下问题:Python segmentation.mark_boundaries方法的具体用法?Python segmentation.mark_boundaries怎么用?Python segmentation.mark_boundaries使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类skimage.segmentation
的用法示例。
在下文中一共展示了segmentation.mark_boundaries方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: visualize
# 需要导入模块: from skimage import segmentation [as 别名]
# 或者: from skimage.segmentation import mark_boundaries [as 别名]
def visualize(self, label_index):
image, mask = self._exp.get_image_and_mask(
label_index,
positive_only=self._positive_only,
num_features=self._num_features, hide_rest=False)
fig = plt.figure()
fig.suptitle('Image Column "%s"' % self._col_name, fontsize=16)
plt.grid(False)
plt.imshow(mark_boundaries(image, mask))
plt.close(fig)
IPython.display.display(fig)
示例2: plot
# 需要导入模块: from skimage import segmentation [as 别名]
# 或者: from skimage.segmentation import mark_boundaries [as 别名]
def plot(self, overlay_alpha=0.5):
import pylab as pl
#pl.imshow(self.image)
tinted = ((1-overlay_alpha)*self.image
+ overlay_alpha*colorize(np.argmax(self.features, 0), self.colors))
from skimage.segmentation import mark_boundaries
tinted = mark_boundaries(tinted.clip(0, 255).astype(np.uint8), np.argmax(self.features, 0))
pl.imshow(tinted)
示例3: MR_showsuperpixel
# 需要导入模块: from skimage import segmentation [as 别名]
# 或者: from skimage.segmentation import mark_boundaries [as 别名]
def MR_showsuperpixel(self,img=None):
if img == None:
img = cv2.cvtColor(camera(),cv2.COLOR_RGB2BGR)
img = self._MR_saliency__MR_readimg(img)
labels = self._MR_saliency__MR_superpixel(img)
plt.axis('off')
plt.imshow(mark_boundaries(img,labels))
plt.show()
示例4: visualise_overlap
# 需要导入模块: from skimage import segmentation [as 别名]
# 或者: from skimage.segmentation import mark_boundaries [as 别名]
def visualise_overlap(path_img, path_seg, path_out,
b_img_scale=BOOL_IMAGE_RESCALE_INTENSITY,
b_img_contour=BOOL_SAVE_IMAGE_CONTOUR,
b_relabel=BOOL_ANNOT_RELABEL,
segm_alpha=MIDDLE_ALPHA_OVERLAP):
img, _ = tl_data.load_image_2d(path_img)
seg, _ = tl_data.load_image_2d(path_seg)
# normalise alpha in range (0, 1)
segm_alpha = tl_visu.norm_aplha(segm_alpha)
if b_relabel:
seg, _, _ = segmentation.relabel_sequential(seg)
if img.ndim == 2: # for gray images of ovary
img = np.rollaxis(np.tile(img, (3, 1, 1)), 0, 3)
if b_img_scale:
p_low, p_high = np.percentile(img, q=(3, 98))
# plt.imshow(255 - img, cmap='Greys')
img = exposure.rescale_intensity(img, in_range=(p_low, p_high),
out_range='uint8')
if b_img_contour:
path_im_visu = os.path.splitext(path_out)[0] + '_contour.png'
img_contour = segmentation.mark_boundaries(img[:, :, :3], seg,
color=COLOR_CONTOUR, mode='subpixel')
plt.imsave(path_im_visu, img_contour)
# else: # for colour images of disc
# mask = (np.sum(img, axis=2) == 0)
# img[mask] = [255, 255, 255]
fig = tl_visu.figure_image_segm_results(img, seg, SIZE_SUB_FIGURE,
mid_labels_alpha=segm_alpha,
mid_image_gray=MIDDLE_IMAGE_GRAY)
fig.savefig(path_out)
plt.close(fig)
示例5: superpixels
# 需要导入模块: from skimage import segmentation [as 别名]
# 或者: from skimage.segmentation import mark_boundaries [as 别名]
def superpixels(im, maxsp=200, vis=False, redirect=False):
"""
Get Slic Superpixels
Input: im: (h,w,c) or (n,h,w,c): 0-255: np.uint8: RGB
Output: sp: (h,w) or (n,h,w): 0-indexed regions, #regions <= maxsp
"""
sTime = time.time()
if im.ndim < 4:
im = im[None, ...]
sp = np.zeros(im.shape[:3], dtype=np.int)
for i in range(im.shape[0]):
# slic needs im: float in [0,1]
sp[i] = slic(im[i].astype(np.float) / 255., n_segments=maxsp, sigma=5)
if not redirect:
sys.stdout.write('Superpixel computation: [% 5.1f%%]\r' %
(100.0 * float((i + 1) / im.shape[0])))
sys.stdout.flush()
eTime = time.time()
print('Superpixel computation finished: %.2f s' % (eTime - sTime))
if vis and False:
# TODO: set directory to save
from skimage.segmentation import mark_boundaries
for i in range(im.shape[0]):
Image.fromarray((mark_boundaries(im[i], sp[i]))).save('.jpg')
if im.ndim < 4:
return sp[0]
return sp
示例6: draw_image
# 需要导入模块: from skimage import segmentation [as 别名]
# 或者: from skimage.segmentation import mark_boundaries [as 别名]
def draw_image(image, segmentation, adjacency, neighborhood):
neighborhood = list(neighborhood)
image = mark_boundaries(image, segmentation, (0, 0, 0))
graph = nx.from_numpy_matrix(adjacency)
segmentation += np.ones_like(segmentation)
segments = regionprops(segmentation)
# Save the centroids in the node properties.
for (n, data), segment in zip(graph.nodes_iter(data=True), segments):
data['centroid'] = segment['centroid']
# Iterate over all edges and draw them.
for n1, n2, data in graph.edges_iter(data=True):
y1, x1 = map(int, graph.node[n1]['centroid'])
y2, x2 = map(int, graph.node[n2]['centroid'])
line = draw.line(y1, x1, y2, x2)
n1_idx = neighborhood.index(n1) if n1 in neighborhood else -1
n2_idx = neighborhood.index(n2) if n2 in neighborhood else -1
if abs(n1_idx - n2_idx) == 1 and n1_idx != -1 and n2_idx != -1:
image[line] = [1, 0, 0]
else:
image[line] = [0, 1, 0]
# Draw a circle at the root node.
for i in range(0, len(neighborhood)):
if neighborhood[i] < 0:
continue
y1, x1 = graph.node[neighborhood[i]]['centroid']
circle = draw.circle(y1, x1, 2)
if i == 0:
image[circle] = [1, 1, 0]
else:
j = (i-1)/(len(neighborhood) - 2)
image[circle] = [j, j, j]
return image
示例7: load_image_annot_compute_features_labels
# 需要导入模块: from skimage import segmentation [as 别名]
# 或者: from skimage.segmentation import mark_boundaries [as 别名]
def load_image_annot_compute_features_labels(idx_row, params,
show_debug_imgs=SHOW_DEBUG_IMAGES):
""" load image and annotation, and compute superpixel features and labels
:param (int, {...}) idx_row: row from table with paths
:param dict params: segmentation parameters
:param bool show_debug_imgs: whether show debug images
:return (...):
"""
def _path_out_img(params, dir_name, name):
return os.path.join(params['path_exp'], dir_name, name + '.png')
idx, row = idx_row
idx_name = get_idx_name(idx, row['path_image'])
img = load_image(row['path_image'], params['img_type'])
annot = load_image(row['path_annot'], '2d_segm')
logging.debug('.. processing: %s', idx_name)
assert img.shape[:2] == annot.shape[:2], \
'individual size of image %r and seg_pipe %r for "%s" - "%s"' % \
(img.shape, annot.shape, row['path_image'], row['path_annot'])
if show_debug_imgs:
plt.imsave(_path_out_img(params, FOLDER_IMAGE, idx_name), img,
cmap=plt.cm.gray)
plt.imsave(_path_out_img(params, FOLDER_ANNOT, idx_name), annot)
# duplicate gray band to be as rgb
# if img.ndim == 2:
# img = np.rollaxis(np.tile(img, (3, 1, 1)), 0, 3)
slic = seg_spx.segment_slic_img2d(img, sp_size=params['slic_size'],
relative_compact=params['slic_regul'])
img = tl_data.convert_img_color_from_rgb(img, params.get('clr_space', 'rgb'))
logging.debug('computed SLIC with %i labels', slic.max())
if show_debug_imgs:
img_rgb = use_rgb_image(img)
img_slic = segmentation.mark_boundaries(img_rgb, slic,
color=(1, 0, 0),
mode='subpixel')
plt.imsave(_path_out_img(params, FOLDER_SLIC, idx_name),
np.clip(img_slic, 0, 1))
slic_label_hist = seg_label.histogram_regions_labels_norm(slic, annot)
labels = np.argmax(slic_label_hist, axis=1)
slic_annot = labels[slic]
if show_debug_imgs:
plt.imsave(_path_out_img(params, FOLDER_SLIC_ANNOT, idx_name),
np.clip(slic_annot, 0, slic_annot.max()))
features, feature_names = seg_fts.compute_selected_features_img2d(
img, slic, params['features'])
return idx_name, img, annot, slic, features, labels, slic_label_hist, feature_names
示例8: figure_segm_graphcut_debug
# 需要导入模块: from skimage import segmentation [as 别名]
# 或者: from skimage.segmentation import mark_boundaries [as 别名]
def figure_segm_graphcut_debug(images, subfig_size=9):
""" creating subfigure with slic, graph edges and results in the first row
and individual class unary terms in the second row
:param dict images: dictionary composed from name and image array
:param int subfig_size: maximal sub-figure size
:return Figure:
>>> images = {
... 'image': np.random.random((100, 150, 3)),
... 'slic': np.random.randint(0, 2, (100, 150)),
... 'slic_mean': np.random.random((100, 150, 3)),
... 'img_graph_edges': np.random.random((100, 150, 3)),
... 'img_graph_segm': np.random.random((100, 150, 3)),
... 'imgs_unary_cost': [np.random.random((100, 150, 3))],
... }
>>> fig = figure_segm_graphcut_debug(images)
>>> isinstance(fig, matplotlib.figure.Figure)
True
"""
assert all(n in images for n in [
'image', 'slic', 'slic_mean', 'img_graph_edges', 'img_graph_segm', 'imgs_unary_cost'
]), 'missing keys in debug structure %r' % tuple(images.keys())
nb_cols = max(3, len(images['imgs_unary_cost']))
img = images['image']
if img.ndim == 2: # for gray images of ovary
img = color.gray2rgb(img)
norm_size = np.array(img.shape[:2]) / float(np.max(img.shape))
fig_size = norm_size[::-1] * subfig_size * np.array([nb_cols, 2])
fig, axarr = plt.subplots(2, nb_cols, figsize=fig_size)
img_slic = segmentation.mark_boundaries(img, images['slic'],
mode='subpixel')
axarr[0, 0].set_title('SLIC')
axarr[0, 0].imshow(img_slic)
for i, k in enumerate(['img_graph_edges', 'img_graph_segm']):
axarr[0, i + 1].set_title(k)
axarr[0, i + 1].imshow(images[k])
for i, im_uc in enumerate(images['imgs_unary_cost']):
axarr[1, i].set_title('unary cost #%i' % i)
axarr[1, i].imshow(im_uc)
for j in range(2):
for i in range(nb_cols):
axarr[j, i].axis('off')
axarr[j, i].axes.get_xaxis().set_ticklabels([])
axarr[j, i].axes.get_yaxis().set_ticklabels([])
fig.subplots_adjust(left=0, right=1, top=1, bottom=0,
wspace=0.05, hspace=0.05)
return fig
示例9: draw_image_segm_points
# 需要导入模块: from skimage import segmentation [as 别名]
# 或者: from skimage.segmentation import mark_boundaries [as 别名]
def draw_image_segm_points(ax, img, points, labels=None, slic=None,
color_slic='w', lut_label_marker=DICT_LABEL_MARKER,
seg_contour=None):
""" on plane draw background image or segmentation, overlap with SLIC
contours, add contour of adative segmentation like annot. for centers
plot point with specific property (shape and colour) according label
:param ax: figure axis
:param ndarray img: image
:param list(tuple(int,int)) points: collection of points
:param list(int) labels: LUT labels for superpixels
:param ndarray slic: superpixel segmentation
:param str color_slic: color dor superpixels
:param dict lut_label_marker: dictionary {int: (str, str)} of label and markers
:param ndarray seg_contour: segmentation contour
>>> img = np.random.randint(0, 256, (100, 100))
>>> points = np.random.randint(0, 100, (25, 2))
>>> labels = np.random.randint(0, 5, len(points))
>>> slic = np.random.randint(0, 256, (100, 100))
>>> draw_image_segm_points(plt.Figure().gca(), img, points, labels, slic)
"""
# background image or segmentation
if img.ndim == 2:
ax.imshow(img, alpha=0.3, cmap=plt.cm.gist_earth)
else:
ax.imshow(img)
if slic is not None:
ax.contour(slic, levels=np.unique(slic), alpha=0.5, colors=color_slic,
linewidths=0.5)
# fig.gca().imshow(mark_boundaries(img, slic))
if seg_contour is not None and isinstance(seg_contour, np.ndarray):
assert img.shape[:2] == seg_contour.shape[:2], \
'image size %r and segm. %r should match' % (img.shape, seg_contour.shape)
ax.contour(seg_contour, linewidths=3, levels=np.unique(seg_contour))
if labels is not None:
assert len(points) == len(labels), \
'number of points (%i) and labels (%i) should match' \
% (len(points), len(labels))
for lb in lut_label_marker:
marker, clr = lut_label_marker[lb]
ax.plot(points[(labels == lb), 1], points[(labels == lb), 0],
marker, color=clr)
else:
ax.plot(points[:, 1], points[:, 0], 'o', color=COLOR_ORANGE)
ax.set(xlim=[0, img.shape[1]], ylim=[img.shape[0], 0])
示例10: show_segmented_image
# 需要导入模块: from skimage import segmentation [as 别名]
# 或者: from skimage.segmentation import mark_boundaries [as 别名]
def show_segmented_image(self, test_img, modality='t1c', show = False):
'''
Creates an image of original brain with segmentation overlay
INPUT (1) str 'test_img': filepath to test image for segmentation, including file extension
(2) str 'modality': imaging modelity to use as background. defaults to t1c. options: (flair, t1, t1c, t2)
(3) bool 'show': If true, shows output image. defaults to False.
OUTPUT (1) if show is True, shows image of segmentation results
(2) if show is false, returns segmented image.
'''
modes = {'flair':0, 't1':1, 't1c':2, 't2':3}
segmentation = self.predict_image(test_img, show=False)
img_mask = np.pad(segmentation, (16,16), mode='edge')
ones = np.argwhere(img_mask == 1)
twos = np.argwhere(img_mask == 2)
threes = np.argwhere(img_mask == 3)
fours = np.argwhere(img_mask == 4)
test_im = io.imread(test_img)
test_back = test_im.reshape(5,240,240)[-2]
# overlay = mark_boundaries(test_back, img_mask)
gray_img = img_as_float(test_back)
# adjust gamma of image
image = adjust_gamma(color.gray2rgb(gray_img), 0.65)
sliced_image = image.copy()
red_multiplier = [1, 0.2, 0.2]
yellow_multiplier = [1,1,0.25]
green_multiplier = [0.35,0.75,0.25]
blue_multiplier = [0,0.25,0.9]
# change colors of segmented classes
for i in xrange(len(ones)):
sliced_image[ones[i][0]][ones[i][1]] = red_multiplier
for i in xrange(len(twos)):
sliced_image[twos[i][0]][twos[i][1]] = green_multiplier
for i in xrange(len(threes)):
sliced_image[threes[i][0]][threes[i][1]] = blue_multiplier
for i in xrange(len(fours)):
sliced_image[fours[i][0]][fours[i][1]] = yellow_multiplier
if show:
io.imshow(sliced_image)
plt.show()
else:
return sliced_image