本文整理汇总了Python中skimage.segmentation.clear_border方法的典型用法代码示例。如果您正苦于以下问题:Python segmentation.clear_border方法的具体用法?Python segmentation.clear_border怎么用?Python segmentation.clear_border使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类skimage.segmentation
的用法示例。
在下文中一共展示了segmentation.clear_border方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: generate_markers
# 需要导入模块: from skimage import segmentation [as 别名]
# 或者: from skimage.segmentation import clear_border [as 别名]
def generate_markers(image):
#Creation of the internal Marker
marker_internal = image < -400
marker_internal = segmentation.clear_border(marker_internal)
marker_internal_labels = measure.label(marker_internal)
areas = [r.area for r in measure.regionprops(marker_internal_labels)]
areas.sort()
if len(areas) > 2:
for region in measure.regionprops(marker_internal_labels):
if region.area < areas[-2]:
for coordinates in region.coords:
marker_internal_labels[coordinates[0], coordinates[1]] = 0
marker_internal = marker_internal_labels > 0
#Creation of the external Marker
external_a = ndimage.binary_dilation(marker_internal, iterations=10)
external_b = ndimage.binary_dilation(marker_internal, iterations=55)
marker_external = external_b ^ external_a
#Creation of the Watershed Marker matrix
marker_watershed = np.zeros(image.shape, dtype=np.int)
marker_watershed += marker_internal * 255
marker_watershed += marker_external * 128
return marker_internal, marker_external, marker_watershed
示例2: get_regions
# 需要导入模块: from skimage import segmentation [as 别名]
# 或者: from skimage.segmentation import clear_border [as 别名]
def get_regions(slice_or_arr, fill_holes=False, clear_borders=True, threshold='otsu'):
"""Get the skimage regions of a black & white image."""
if threshold == 'otsu':
thresmeth = filters.threshold_otsu
elif threshold == 'mean':
thresmeth = np.mean
if isinstance(slice_or_arr, Slice):
edges = filters.scharr(slice_or_arr.image.array.astype(np.float))
center = slice_or_arr.image.center
elif isinstance(slice_or_arr, np.ndarray):
edges = filters.scharr(slice_or_arr.astype(np.float))
center = (int(edges.shape[1]/2), int(edges.shape[0]/2))
edges = filters.gaussian(edges, sigma=1)
if isinstance(slice_or_arr, Slice):
box_size = 100/slice_or_arr.mm_per_pixel
thres_img = edges[int(center.y-box_size):int(center.y+box_size),
int(center.x-box_size):int(center.x+box_size)]
thres = thresmeth(thres_img)
else:
thres = thresmeth(edges)
bw = edges > thres
if clear_borders:
segmentation.clear_border(bw, buffer_size=int(max(bw.shape)/50), in_place=True)
if fill_holes:
bw = ndimage.binary_fill_holes(bw)
labeled_arr, num_roi = measure.label(bw, return_num=True)
regionprops = measure.regionprops(labeled_arr, edges)
return labeled_arr, regionprops, num_roi
示例3: get_segmented_lungs
# 需要导入模块: from skimage import segmentation [as 别名]
# 或者: from skimage.segmentation import clear_border [as 别名]
def get_segmented_lungs(im, plot=False):
# Step 1: Convert into a binary image.
binary = im < -400
# Step 2: Remove the blobs connected to the border of the image.
cleared = clear_border(binary)
# Step 3: Label the image.
label_image = label(cleared)
# Step 4: Keep the labels with 2 largest areas.
areas = [r.area for r in regionprops(label_image)]
areas.sort()
if len(areas) > 2:
for region in regionprops(label_image):
if region.area < areas[-2]:
for coordinates in region.coords:
label_image[coordinates[0], coordinates[1]] = 0
binary = label_image > 0
# Step 5: Erosion operation with a disk of radius 2. This operation is seperate the lung nodules attached to the blood vessels.
selem = disk(2)
binary = binary_erosion(binary, selem)
# Step 6: Closure operation with a disk of radius 10. This operation is to keep nodules attached to the lung wall.
selem = disk(10) # CHANGE BACK TO 10
binary = binary_closing(binary, selem)
# Step 7: Fill in the small holes inside the binary mask of lungs.
edges = roberts(binary)
binary = ndi.binary_fill_holes(edges)
# Step 8: Superimpose the binary mask on the input image.
get_high_vals = binary == 0
im[get_high_vals] = -2000
return im, binary
示例4: find_disconnected_voxels
# 需要导入模块: from skimage import segmentation [as 别名]
# 或者: from skimage.segmentation import clear_border [as 别名]
def find_disconnected_voxels(im, conn=None):
r"""
This identifies all pore (or solid) voxels that are not connected to the
edge of the image. This can be used to find blind pores, or remove
artifacts such as solid phase voxels that are floating in space.
Parameters
----------
im : ND-image
A Boolean image, with True values indicating the phase for which
disconnected voxels are sought.
conn : int
For 2D the options are 4 and 8 for square and diagonal neighbors, while
for the 3D the options are 6 and 26, similarily for square and diagonal
neighbors. The default is max
Returns
-------
image : ND-array
An ND-image the same size as ``im``, with True values indicating
voxels of the phase of interest (i.e. True values in the original
image) that are not connected to the outer edges.
Notes
-----
image : ND-array
The returned array (e.g. ``holes``) be used to trim blind pores from
``im`` using: ``im[holes] = False``
"""
if im.ndim != im.squeeze().ndim:
warnings.warn('Input image conains a singleton axis:' + str(im.shape) +
' Reduce dimensionality with np.squeeze(im) to avoid' +
' unexpected behavior.')
if im.ndim == 2:
if conn == 4:
strel = disk(1)
elif conn in [None, 8]:
strel = square(3)
elif im.ndim == 3:
if conn == 6:
strel = ball(1)
elif conn in [None, 26]:
strel = cube(3)
labels, N = spim.label(input=im, structure=strel)
holes = clear_border(labels=labels) > 0
return holes
示例5: apply_chords_3D
# 需要导入模块: from skimage import segmentation [as 别名]
# 或者: from skimage.segmentation import clear_border [as 别名]
def apply_chords_3D(im, spacing=0, trim_edges=True):
r"""
Adds chords to the void space in all three principle directions. The
chords are seprated by 1 voxel plus the provided spacing. Chords in the X,
Y and Z directions are labelled 1, 2 and 3 resepctively.
Parameters
----------
im : ND-array
A 3D image of the porous material with void space marked as True.
spacing : int (default = 0)
Chords are automatically separed by 1 voxel on all sides, and this
argument increases the separation.
trim_edges : bool (default is ``True``)
Whether or not to remove chords that touch the edges of the image.
These chords are artifically shortened, so skew the chord length
distribution
Returns
-------
image : ND-array
A copy of ``im`` with values of 1 indicating x-direction chords,
2 indicating y-direction chords, and 3 indicating z-direction chords.
Notes
-----
The chords are separated by a spacing of at least 1 voxel so that tools
that search for connected components, such as ``scipy.ndimage.label`` can
detect individual chords.
See Also
--------
apply_chords
"""
if im.ndim != im.squeeze().ndim:
warnings.warn('Input image conains a singleton axis:' + str(im.shape) +
' Reduce dimensionality with np.squeeze(im) to avoid' +
' unexpected behavior.')
if im.ndim < 3:
raise Exception('Must be a 3D image to use this function')
if spacing < 0:
raise Exception('Spacing cannot be less than 0')
ch = np.zeros_like(im, dtype=int)
ch[:, ::4+2*spacing, ::4+2*spacing] = 1 # X-direction
ch[::4+2*spacing, :, 2::4+2*spacing] = 2 # Y-direction
ch[2::4+2*spacing, 2::4+2*spacing, :] = 3 # Z-direction
chords = ch*im
if trim_edges:
temp = clear_border(spim.label(chords > 0)[0]) > 0
chords = temp*chords
return chords