本文整理汇总了Python中skimage.morphology.remove_small_objects方法的典型用法代码示例。如果您正苦于以下问题:Python morphology.remove_small_objects方法的具体用法?Python morphology.remove_small_objects怎么用?Python morphology.remove_small_objects使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类skimage.morphology
的用法示例。
在下文中一共展示了morphology.remove_small_objects方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: remove_small_tissue
# 需要导入模块: from skimage import morphology [as 别名]
# 或者: from skimage.morphology import remove_small_objects [as 别名]
def remove_small_tissue(bw_img, min_size=10000):
""" Remove small holes in tissue image
Parameters
----------
bw_img : np.array
2D binary image.
min_size: int
Minimum tissue area.
Returns
-------
bw_remove: np.array
Binary image with small tissue regions removed
"""
bw_remove = remove_small_objects(bw_img, min_size=min_size, connectivity=8)
return bw_remove
示例2: wsh
# 需要导入模块: from skimage import morphology [as 别名]
# 或者: from skimage.morphology import remove_small_objects [as 别名]
def wsh(mask_img, threshold, border_img, seeds):
img_copy = np.copy(mask_img)
m = seeds * border_img# * dt
img_copy[m <= threshold + 0.35] = 0
img_copy[m > threshold + 0.35] = 1
img_copy = img_copy.astype(np.bool)
img_copy = remove_small_objects(img_copy, 10).astype(np.uint8)
mask_img[mask_img <= threshold] = 0
mask_img[mask_img > threshold] = 1
mask_img = mask_img.astype(np.bool)
mask_img = remove_small_holes(mask_img, 1000)
mask_img = remove_small_objects(mask_img, 8).astype(np.uint8)
# cv2.imwrite('t.png', (mask_img * 255).astype(np.uint8))
# cv2.imwrite('t2.png', (img_copy * 255).astype(np.uint8))
labeled_array = my_watershed(mask_img, mask_img, img_copy)
return labeled_array
示例3: test_autocrop
# 需要导入模块: from skimage import morphology [as 别名]
# 或者: from skimage.morphology import remove_small_objects [as 别名]
def test_autocrop(self):
from PIL import Image
import numpy as np
from skimage import morphology
image = Image.open("screenshots/screenshot.png")
width, height = image.size[0], image.size[1]
array_img = np.array(image)
ot_img = (array_img > 200)
obj_dtec_img = morphology.remove_small_objects(ot_img, min_size=width * height / 4, connectivity=1)
if np.sum(obj_dtec_img) < 1000:
print("can't find question")
print([
np.where(obj_dtec_img * 1.0 > 0)[1].min() + 20,
np.where(obj_dtec_img * 1.0 > 0)[0].min(),
np.where(obj_dtec_img * 1.0 > 0)[1].max(),
np.where(obj_dtec_img * 1.0 > 0)[0].max()])
示例4: auto_find_crop_area
# 需要导入模块: from skimage import morphology [as 别名]
# 或者: from skimage.morphology import remove_small_objects [as 别名]
def auto_find_crop_area(source_file):
"""
1. convert to gray picture
2. find pixel > 200 (white) and connect
3. if > image/4
4. find edge of question and answer
:param source_file:
:return:
"""
image = Image.open(source_file)
width, height = image.size[0], image.size[1]
array_img = np.array(image)
ot_img = (array_img > 200)
obj_dtec_img = morphology.remove_small_objects(ot_img, min_size=width * height / 4, connectivity=1)
if np.sum(obj_dtec_img) < 1000:
return []
return [
np.where(obj_dtec_img * 1.0 > 0)[1].min() + 20,
np.where(obj_dtec_img * 1.0 > 0)[0].min(),
np.where(obj_dtec_img * 1.0 > 0)[1].max(),
np.where(obj_dtec_img * 1.0 > 0)[0].max()]
示例5: finalProcessingArea
# 需要导入模块: from skimage import morphology [as 别名]
# 或者: from skimage.morphology import remove_small_objects [as 别名]
def finalProcessingArea(s, params):
logging.info(f"{s['filename']} - \tfinalProcessingArea")
area_thresh = int(params.get("area_threshold", "1000"))
mask = s["img_mask_use"]
mask_opened = remove_small_objects(mask, min_size=area_thresh)
mask_removed_area = ~mask_opened & mask
io.imsave(s["outdir"] + os.sep + s["filename"] + "_areathresh.png", img_as_ubyte(mask_removed_area))
prev_mask = s["img_mask_use"]
s["img_mask_use"] = mask_opened > 0
s.addToPrintList("areaThresh",
printMaskHelper(params.get("mask_statistics", s["mask_statistics"]), prev_mask, s["img_mask_use"]))
if len(s["img_mask_use"].nonzero()[0]) == 0: # add warning in case the final tissue is empty
logging.warning(
f"{s['filename']} - After BasicModule.finalProcessingArea NO tissue remains detectable! Downstream modules likely to be incorrect/fail")
s["warnings"].append(
f"After BasicModule.finalProcessingArea NO tissue remains detectable! Downstream modules likely to be incorrect/fail")
示例6: removeSmallObjects
# 需要导入模块: from skimage import morphology [as 别名]
# 或者: from skimage.morphology import remove_small_objects [as 别名]
def removeSmallObjects(s, params):
logging.info(f"{s['filename']} - \tremoveSmallObjects")
min_size = int(params.get("min_size", 64))
img_reduced = morphology.remove_small_objects(s["img_mask_use"], min_size=min_size)
img_small = np.invert(img_reduced) & s["img_mask_use"]
io.imsave(s["outdir"] + os.sep + s["filename"] + "_small_remove.png", img_as_ubyte(img_small))
s["img_mask_small_filled"] = (img_small * 255) > 0
prev_mask = s["img_mask_use"]
s["img_mask_use"] = img_reduced
s.addToPrintList("percent_small_tissue_removed",
printMaskHelper(params.get("mask_statistics", s["mask_statistics"]), prev_mask, s["img_mask_use"]))
if len(s["img_mask_use"].nonzero()[0]) == 0: # add warning in case the final tissue is empty
logging.warning(f"{s['filename']} - After MorphologyModule.removeSmallObjects: NO tissue "
f"remains detectable! Downstream modules likely to be incorrect/fail")
s["warnings"].append(f"After MorphologyModule.removeSmallObjects: NO tissue remains "
f"detectable! Downstream modules likely to be incorrect/fail")
return
示例7: proc_np_dist
# 需要导入模块: from skimage import morphology [as 别名]
# 或者: from skimage.morphology import remove_small_objects [as 别名]
def proc_np_dist(pred):
"""
Process Nuclei Prediction with Distance Map
Args:
pred: prediction output, assuming
channel 0 contain probability map of nuclei
channel 1 containing the regressed distance map
"""
blb_raw = pred[...,0]
dst_raw = pred[...,1]
blb = np.copy(blb_raw)
blb[blb > 0.5] = 1
blb[blb <= 0.5] = 0
blb = measurements.label(blb)[0]
blb = remove_small_objects(blb, min_size=10)
blb[blb > 0] = 1
dst_raw[dst_raw < 0] = 0
dst = np.copy(dst_raw)
dst = dst * blb
dst[dst > 0.5] = 1
dst[dst <= 0.5] = 0
marker = dst.copy()
marker = binary_fill_holes(marker)
marker = measurements.label(marker)[0]
marker = remove_small_objects(marker, min_size=10)
proced_pred = watershed(-dst_raw, marker, mask=blb)
return proced_pred
####
示例8: cleanSmallObjects
# 需要导入模块: from skimage import morphology [as 别名]
# 或者: from skimage.morphology import remove_small_objects [as 别名]
def cleanSmallObjects(self):
cleanImg = morphology.remove_small_objects(self.curImg, min_size=130, connectivity=100)
self.curImg = cleanImg
#cv2.imwrite('Final123.jpg',threshImg)
开发者ID:ebdulrasheed,项目名称:Diabetic-Retinopathy-Feature-Extraction-using-Fundus-Images,代码行数:7,代码来源:BloodVessels.py
示例9: compute_binary_mask_lasseck
# 需要导入模块: from skimage import morphology [as 别名]
# 或者: from skimage.morphology import remove_small_objects [as 别名]
def compute_binary_mask_lasseck(spectrogram, threshold):
# normalize to [0, 1)
norm_spectrogram = normalize(spectrogram)
# median clipping
binary_image = median_clipping(norm_spectrogram, threshold)
# closing binary image (dilation followed by erosion)
binary_image = morphology.binary_closing(binary_image, selem=np.ones((4, 4)))
# dialate binary image
binary_image = morphology.binary_dilation(binary_image, selem=np.ones((4, 4)))
# apply median filter
binary_image = filters.median(binary_image, selem=np.ones((2, 2)))
# remove small objects
binary_image = morphology.remove_small_objects(binary_image, min_size=32, connectivity=1)
mask = np.array([np.max(col) for col in binary_image.T])
mask = smooth_mask(mask)
return mask
# TODO: This method needs some real testing
示例10: get_rough_detection
# 需要导入模块: from skimage import morphology [as 别名]
# 或者: from skimage.morphology import remove_small_objects [as 别名]
def get_rough_detection(self, img, bigsize=40.0, smallsize=4.0, thresh = 0):
diff = self.difference_of_gaussian(-img, bigsize, smallsize)
diff[diff>thresh] = 1
se = morphology.square(4)
ero = morphology.erosion(diff, se)
labimage = label(ero)
#rec = morphology.reconstruction(ero, img, method='dilation').astype(np.dtype('uint8'))
# connectivity=1 corresponds to 4-connectivity.
morphology.remove_small_objects(labimage, min_size=600, connectivity=1, in_place=True)
#res = np.zeros(img.shape)
ero[labimage==0] = 0
ero = 1 - ero
labimage = label(ero)
morphology.remove_small_objects(labimage, min_size=400, connectivity=1, in_place=True)
ero[labimage==0] = 0
res = 1 - ero
res[res>0] = 255
#temp = 255 - temp
#temp = morphology.remove_small_objects(temp, min_size=400, connectivity=1, in_place=True)
#res = 255 - temp
return res
示例11: drop_small_unlabeled
# 需要导入模块: from skimage import morphology [as 别名]
# 或者: from skimage.morphology import remove_small_objects [as 别名]
def drop_small_unlabeled(img, min_size):
img = morph.remove_small_objects(img.astype(np.bool), min_size=min_size)
return img.astype(np.uint8)
示例12: drop_small
# 需要导入模块: from skimage import morphology [as 别名]
# 或者: from skimage.morphology import remove_small_objects [as 别名]
def drop_small(img, min_size):
img = morph.remove_small_objects(img, min_size=min_size)
return relabel(img)
示例13: remove_small_regions
# 需要导入模块: from skimage import morphology [as 别名]
# 或者: from skimage.morphology import remove_small_objects [as 别名]
def remove_small_regions(img, size):
"""Morphologically removes small (less than size) connected regions of 0s or 1s."""
img = morphology.remove_small_objects(img, size)
img = morphology.remove_small_holes(img, size)
return img
示例14: load_correct_segm
# 需要导入模块: from skimage import morphology [as 别名]
# 或者: from skimage.morphology import remove_small_objects [as 别名]
def load_correct_segm(path_img):
""" load segmentation and correct it with simple morphological operations
:param str path_img:
:return (ndarray, ndarray):
"""
assert os.path.isfile(path_img), 'missing: %s' % path_img
logging.debug('loading image: %s', path_img)
img = tl_data.io_imread(path_img)
seg = (img > 0)
seg = morphology.binary_opening(seg, selem=morphology.disk(25))
seg = morphology.remove_small_objects(seg)
seg_lb = measure.label(seg)
seg_lb[seg == 0] = 0
return seg, seg_lb
示例15: parse_answer_area
# 需要导入模块: from skimage import morphology [as 别名]
# 或者: from skimage.morphology import remove_small_objects [as 别名]
def parse_answer_area(source_file, text_area_file, compress_level, crop_area):
"""
crop the answer area
:return:
"""
image = Image.open(source_file)
width, height = image.size[0], image.size[1]
if not crop_area:
image = image.convert("L")
array_img = np.array(image)
ot_img = (array_img > 225)
obj_dtec_img = morphology.remove_small_objects(ot_img, min_size=width * height / 4, connectivity=1)
if np.sum(obj_dtec_img) < 1000:
return False
region = image.crop((
np.where(obj_dtec_img * 1.0 > 0)[1].min() + 20,
np.where(obj_dtec_img * 1.0 > 0)[0].min() + 215,
np.where(obj_dtec_img * 1.0 > 0)[1].max(),
np.where(obj_dtec_img * 1.0 > 0)[0].max()))
else:
if compress_level == 1:
image = image.convert("L")
elif compress_level == 2:
image = image.convert("1")
region = image.crop((width * crop_area[0], height * crop_area[1], width * crop_area[2], height * crop_area[3]))
if enable_scale:
region = region.resize((int(1080 / 3), int(1920 / 5)), Image.BILINEAR)
region.save(text_area_file)
return True