本文整理汇总了Python中skimage.morphology.binary_opening方法的典型用法代码示例。如果您正苦于以下问题:Python morphology.binary_opening方法的具体用法?Python morphology.binary_opening怎么用?Python morphology.binary_opening使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类skimage.morphology
的用法示例。
在下文中一共展示了morphology.binary_opening方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: finalProcessingSpur
# 需要导入模块: from skimage import morphology [as 别名]
# 或者: from skimage.morphology import binary_opening [as 别名]
def finalProcessingSpur(s, params):
logging.info(f"{s['filename']} - \tfinalProcessingSpur")
disk_radius = int(params.get("disk_radius", "25"))
selem = disk(disk_radius)
mask = s["img_mask_use"]
mask_opened = binary_opening(mask, selem)
mask_spur = ~mask_opened & mask
io.imsave(s["outdir"] + os.sep + s["filename"] + "_spur.png", img_as_ubyte(mask_spur))
prev_mask = s["img_mask_use"]
s["img_mask_use"] = mask_opened
s.addToPrintList("spur_pixels",
printMaskHelper(params.get("mask_statistics", s["mask_statistics"]), prev_mask, s["img_mask_use"]))
if len(s["img_mask_use"].nonzero()[0]) == 0: # add warning in case the final tissue is empty
logging.warning(
f"{s['filename']} - After BasicModule.finalProcessingSpur NO tissue remains detectable! Downstream modules likely to be incorrect/fail")
s["warnings"].append(
f"After BasicModule.finalProcessingSpur NO tissue remains detectable! Downstream modules likely to be incorrect/fail")
示例2: extract_boxes_as_dictionaries
# 需要导入模块: from skimage import morphology [as 别名]
# 或者: from skimage.morphology import binary_opening [as 别名]
def extract_boxes_as_dictionaries(image, threshold=0.5, se=disk(3)):
mask = image > threshold
mask = binary_opening(mask, selem=se)
try:
props = regionprops(label(mask))
def _tag(tlbr):
t, l, b, r = tlbr
return dict(top=int(t), left=int(l), bottom=int(b), right=int(r))
result = [_tag(r.bbox) for r in props]
except (ValueError, TypeError) as e:
result = []
return result
示例3: clean_mask
# 需要导入模块: from skimage import morphology [as 别名]
# 或者: from skimage.morphology import binary_opening [as 别名]
def clean_mask(m, c):
# threshold
m_thresh = threshold_otsu(m)
c_thresh = threshold_otsu(c)
m_b = m > m_thresh
c_b = c > c_thresh
# combine contours and masks and fill the cells
m_ = np.where(m_b | c_b, 1, 0)
m_ = ndi.binary_fill_holes(m_)
# close what wasn't closed before
area, radius = mean_blob_size(m_b)
struct_size = int(1.25 * radius)
struct_el = morph.disk(struct_size)
m_padded = pad_mask(m_, pad=struct_size)
m_padded = morph.binary_closing(m_padded, selem=struct_el)
m_ = crop_mask(m_padded, crop=struct_size)
# open to cut the real cells from the artifacts
area, radius = mean_blob_size(m_b)
struct_size = int(0.75 * radius)
struct_el = morph.disk(struct_size)
m_ = np.where(c_b & (~m_b), 0, m_)
m_padded = pad_mask(m_, pad=struct_size)
m_padded = morph.binary_opening(m_padded, selem=struct_el)
m_ = crop_mask(m_padded, crop=struct_size)
# join the connected cells with what we had at the beginning
m_ = np.where(m_b | m_, 1, 0)
m_ = ndi.binary_fill_holes(m_)
# drop all the cells that weren't present at least in 25% of area in the initial mask
m_ = drop_artifacts(m_, m_b, min_coverage=0.25)
return m_
示例4: grow_mask
# 需要导入模块: from skimage import morphology [as 别名]
# 或者: from skimage.morphology import binary_opening [as 别名]
def grow_mask(anat, aseg, ants_segs=None, ww=7, zval=2.0, bw=4):
"""
Grow mask including pixels that have a high likelihood.
GM tissue parameters are sampled in image patches of ``ww`` size.
This is inspired on mindboggle's solution to the problem:
https://github.com/nipy/mindboggle/blob/master/mindboggle/guts/segment.py#L1660
"""
selem = sim.ball(bw)
if ants_segs is None:
ants_segs = np.zeros_like(aseg, dtype=np.uint8)
aseg[aseg == 42] = 3 # Collapse both hemispheres
gm = anat.copy()
gm[aseg != 3] = 0
refined = refine_aseg(aseg)
newrefmask = sim.binary_dilation(refined, selem) - refined
indices = np.argwhere(newrefmask > 0)
for pixel in indices:
# When ATROPOS identified the pixel as GM, set and carry on
if ants_segs[tuple(pixel)] == 2:
refined[tuple(pixel)] = 1
continue
window = gm[
pixel[0] - ww:pixel[0] + ww,
pixel[1] - ww:pixel[1] + ww,
pixel[2] - ww:pixel[2] + ww,
]
if np.any(window > 0):
mu = window[window > 0].mean()
sigma = max(window[window > 0].std(), 1.0e-5)
zstat = abs(anat[tuple(pixel)] - mu) / sigma
refined[tuple(pixel)] = int(zstat < zval)
refined = sim.binary_opening(refined, selem)
return refined
示例5: load_correct_segm
# 需要导入模块: from skimage import morphology [as 别名]
# 或者: from skimage.morphology import binary_opening [as 别名]
def load_correct_segm(path_img):
""" load segmentation and correct it with simple morphological operations
:param str path_img:
:return (ndarray, ndarray):
"""
assert os.path.isfile(path_img), 'missing: %s' % path_img
logging.debug('loading image: %s', path_img)
img = tl_data.io_imread(path_img)
seg = (img > 0)
seg = morphology.binary_opening(seg, selem=morphology.disk(25))
seg = morphology.remove_small_objects(seg)
seg_lb = measure.label(seg)
seg_lb[seg == 0] = 0
return seg, seg_lb
示例6: segm_set_center_levels
# 需要导入模块: from skimage import morphology [as 别名]
# 或者: from skimage.morphology import binary_opening [as 别名]
def segm_set_center_levels(name, seg_labels, path_out, levels=DISTANCE_LEVELS):
""" set segmentation levels according distance inside object imsegm
:param str name: image name
:param ndarray seg_labels:
:param str path_out: path for output
:param [float] levels: distance levels fro segmentation levels
"""
seg = np.zeros_like(seg_labels)
# set bourders to 0
# seg_labels = set_boundary_values(seg_labels)
for obj_id in range(1, seg_labels.max() + 1):
im_bin = (seg_labels == obj_id)
if np.sum(im_bin) == 0:
continue
distance = ndimage.distance_transform_edt(im_bin)
probab = distance / np.max(distance)
pos_center = ndimage.measurements.center_of_mass(im_bin)
# logging.debug('object %i with levels: %s', obj_id, repr(levels))
for i, level in enumerate(levels):
mask = probab > level
if i > 0:
radius = int(np.sqrt(np.sum(mask) / np.pi))
im_level = draw_circle(pos_center, radius, mask.shape)
mask = np.logical_and(mask, im_level)
sel = morphology.disk(int(radius * 0.15))
mask = morphology.binary_opening(mask, sel)
seg[mask] = i + 1
path_seg = os.path.join(path_out, name)
tl_data.io_imsave(path_seg, seg.astype(np.uint8))
示例7: segment_watershed
# 需要导入模块: from skimage import morphology [as 别名]
# 或者: from skimage.morphology import binary_opening [as 别名]
def segment_watershed(seg, centers, post_morph=False):
""" perform watershed segmentation on input imsegm
and optionally run some postprocessing using morphological operations
:param ndarray seg: input image / segmentation
:param [[int, int]] centers: position of centres / seeds
:param bool post_morph: apply morphological postprocessing
:return ndarray, [[int, int]]: resulting segmentation, updated centres
"""
logging.debug('segment: watershed...')
seg_binary = (seg > 0)
seg_binary = ndimage.morphology.binary_fill_holes(seg_binary)
# thr_area = int(0.05 * np.sum(seg_binary))
# seg_binary = morphology.remove_small_holes(seg_binary, min_size=thr_area)
distance = ndimage.distance_transform_edt(seg_binary)
markers = np.zeros_like(seg)
for i, pos in enumerate(centers):
markers[int(pos[0]), int(pos[1])] = i + 1
segm = morphology.watershed(-distance, markers, mask=seg_binary)
# if morphological postprocessing was not selected, ends here
if not post_morph:
return segm, centers, None
segm_clean = np.zeros_like(segm)
for lb in range(1, np.max(segm) + 1):
seg_lb = (segm == lb)
# some morphology operartion for cleaning
seg_lb = morphology.binary_closing(seg_lb, selem=morphology.disk(5))
seg_lb = ndimage.morphology.binary_fill_holes(seg_lb)
# thr_area = int(0.15 * np.sum(seg_lb))
# seg_lb = morphology.remove_small_holes(seg_lb, min_size=thr_area)
seg_lb = morphology.binary_opening(seg_lb, selem=morphology.disk(15))
segm_clean[seg_lb] = lb
return segm_clean, centers, None
示例8: opening
# 需要导入模块: from skimage import morphology [as 别名]
# 或者: from skimage.morphology import binary_opening [as 别名]
def opening(gray_img, kernel=None):
"""Wrapper for scikit-image opening functions. Opening can remove small bright spots (i.e. salt).
Inputs:
gray_img = input image (grayscale or binary)
kernel = optional neighborhood, expressed as an array of 1s and 0s. If None, use cross-shaped structuring element.
:param gray_img: ndarray
:param kernel = ndarray
:return filtered_img: ndarray
"""
params.device += 1
# Make sure the image is binary/grayscale
if len(np.shape(gray_img)) != 2:
fatal_error("Input image must be grayscale or binary")
# If image is binary use the faster method
if len(np.unique(gray_img)) == 2:
bool_img = morphology.binary_opening(gray_img, kernel)
filtered_img = np.copy(bool_img.astype(np.uint8) * 255)
# Otherwise use method appropriate for grayscale images
else:
filtered_img = morphology.opening(gray_img, kernel)
if params.debug == 'print':
print_image(filtered_img, os.path.join(params.debug_outdir, str(params.device) + '_opening.png'))
elif params.debug == 'plot':
plot_image(filtered_img, cmap='gray')
return filtered_img
示例9: create_cloud_mask
# 需要导入模块: from skimage import morphology [as 别名]
# 或者: from skimage.morphology import binary_opening [as 别名]
def create_cloud_mask(im_QA, satname, cloud_mask_issue):
"""
Creates a cloud mask using the information contained in the QA band.
KV WRL 2018
Arguments:
-----------
im_QA: np.array
Image containing the QA band
satname: string
short name for the satellite: ```'L5', 'L7', 'L8' or 'S2'```
cloud_mask_issue: boolean
True if there is an issue with the cloud mask and sand pixels are being
erroneously masked on the images
Returns:
-----------
cloud_mask : np.array
boolean array with True if a pixel is cloudy and False otherwise
"""
# convert QA bits (the bits allocated to cloud cover vary depending on the satellite mission)
if satname == 'L8':
cloud_values = [2800, 2804, 2808, 2812, 6896, 6900, 6904, 6908]
elif satname == 'L7' or satname == 'L5' or satname == 'L4':
cloud_values = [752, 756, 760, 764]
elif satname == 'S2':
cloud_values = [1024, 2048] # 1024 = dense cloud, 2048 = cirrus clouds
# find which pixels have bits corresponding to cloud values
cloud_mask = np.isin(im_QA, cloud_values)
# remove cloud pixels that form very thin features. These are beach or swash pixels that are
# erroneously identified as clouds by the CFMASK algorithm applied to the images by the USGS.
if sum(sum(cloud_mask)) > 0 and sum(sum(~cloud_mask)) > 0:
morphology.remove_small_objects(cloud_mask, min_size=10, connectivity=1, in_place=True)
if cloud_mask_issue:
elem = morphology.square(3) # use a square of width 3 pixels
cloud_mask = morphology.binary_opening(cloud_mask,elem) # perform image opening
# remove objects with less than 25 connected pixels
morphology.remove_small_objects(cloud_mask, min_size=25, connectivity=1, in_place=True)
return cloud_mask