本文整理汇总了Python中skimage.morphology.binary_erosion方法的典型用法代码示例。如果您正苦于以下问题:Python morphology.binary_erosion方法的具体用法?Python morphology.binary_erosion怎么用?Python morphology.binary_erosion使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类skimage.morphology
的用法示例。
在下文中一共展示了morphology.binary_erosion方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: get_connected_component_shape
# 需要导入模块: from skimage import morphology [as 别名]
# 或者: from skimage.morphology import binary_erosion [as 别名]
def get_connected_component_shape(layer, event):
cords = np.round(layer.coordinates).astype(int)
val = layer.get_value()
if val is None:
return
if val != 0:
data = layer.data
binary = data == val
if 'Shift' in event.modifiers:
binary_new = binary_erosion(binary)
data[binary] = 0
data[binary_new] = val
else:
binary_new = binary_dilation(binary)
data[binary_new] = val
size = np.sum(binary_new)
layer.data = data
msg = f'clicked at {cords} on blob {val} which is now {size} pixels'
else:
msg = f'clicked at {cords} on background which is ignored'
layer.status = msg
print(msg)
示例2: compute_binary_mask_sprengel
# 需要导入模块: from skimage import morphology [as 别名]
# 或者: from skimage.morphology import binary_erosion [as 别名]
def compute_binary_mask_sprengel(spectrogram, threshold):
""" Computes a binary mask for the spectrogram
# Arguments
spectrogram : a numpy array representation of a spectrogram (2-dim)
threshold : a threshold for times larger than the median
# Returns
binary_mask : the binary mask
"""
# normalize to [0, 1)
norm_spectrogram = normalize(spectrogram)
# median clipping
binary_image = median_clipping(norm_spectrogram, threshold)
# erosion
binary_image = morphology.binary_erosion(binary_image, selem=np.ones((4, 4)))
# dilation
binary_image = morphology.binary_dilation(binary_image, selem=np.ones((4, 4)))
# extract mask
mask = np.array([np.max(col) for col in binary_image.T])
mask = smooth_mask(mask)
return mask
示例3: get_pos_dst_transform
# 需要导入模块: from skimage import morphology [as 别名]
# 或者: from skimage.morphology import binary_erosion [as 别名]
def get_pos_dst_transform(label_unmodified, img, instance, old_label=None, dt_method="edt"):
label = np.where(label_unmodified == instance, 1, 0)
# If an old label is available, then sample positive clicks on the difference between the two.
if old_label is not None:
# The difference should be taken only if there is atleast one object pixel in the difference.
label = np.max(0, label - old_label) if np.any((label - old_label) == 1) else label
# Leave a margin around the object boundary
img_area = morphology.binary_erosion(label, morphology.diamond(D_MARGIN))
img_area = img_area if len(np.where(img_area == 1)[0]) > 0 else np.copy(label)
# Set of ground truth pixels.
O = np.where(img_area == 1)
# Randomly sample the number of positive clicks and negative clicks to use.
num_clicks_pos = 0 if len(O) == 0 else random.sample(list(range(1, Npos + 1)), 1)
# num_clicks_pos = random.sample(range(1, Npos + 1), 1)
pts = get_sampled_locations(O, img_area, num_clicks_pos)
u1 = get_distance_transform(pts, img_area, img=img, dt_method=dt_method)
return u1, pts
示例4: basin
# 需要导入模块: from skimage import morphology [as 别名]
# 或者: from skimage.morphology import binary_erosion [as 别名]
def basin(label_mask, wall):
h,w = np.shape(label_mask)
y, x = np.mgrid[0:h, 0:w]
struct = generate_binary_structure(2,2)
shifty, shiftx = np.mgrid[0:3, 0:3]
shifty = (shifty-1).flatten()
shiftx = (shiftx-1).flatten()
for i in range(4):
obdr = label_mask^binary_dilation(label_mask, struct)
ibdr = label_mask^binary_erosion(label_mask, struct)
yob, xob = y[obdr], x[obdr]
ynb, xnb = yob.reshape(-1,1)+shifty, xob.reshape(-1,1)+shiftx
wallnb = np.min(map_coords(wall, (ynb, xnb))*(map_coords(ibdr, (ynb, xnb))==1)+\
5*(map_coords(ibdr, (ynb, xnb))!=1),1)
keep = (wall[yob,xob]>wallnb)&(wallnb<=4)
label_mask[yob[keep], xob[keep]]=True
if np.sum(keep)==0:
break
return label_mask
示例5: buffer_mask_in_place
# 需要导入模块: from skimage import morphology [as 别名]
# 或者: from skimage.morphology import binary_erosion [as 别名]
def buffer_mask_in_place(mask_path, buffer_size):
"""Expands a mask in-place, overwriting the previous mask"""
log = logging.getLogger(__name__)
log.info("Buffering {} with buffer size {}".format(mask_path, buffer_size))
mask = gdal.Open(mask_path, gdal.GA_Update)
mask_array = mask.GetVirtualMemArray(eAccess=gdal.GA_Update)
cache = morph.binary_erosion(mask_array.squeeze(), selem=morph.disk(buffer_size))
np.copyto(mask_array, cache)
mask_array = None
mask = None
示例6: _create_facade_mask
# 需要导入模块: from skimage import morphology [as 别名]
# 或者: from skimage.morphology import binary_erosion [as 别名]
def _create_facade_mask(self):
facade_mask = self.driving_layers.building() > 0.5
facade_mask = binary_erosion(facade_mask, disk(10)) # Sky is noisy
# Remove non-wall elements from the facade (we want just the wall)
facade_mask[self.window_mask()] = 0
facade_mask[self.facade_layers.door() > 0.5] = 0
facade_mask[self.balcony_mask()] = 0
# facade_mask[self.shop_mask()] = 0
facade_mask[self.pillar_mask()] = 0
facade_mask[self.facade_layers.molding() > 0.5] = 0
return facade_mask
示例7: sprengel_binary_mask_from_wave_file
# 需要导入模块: from skimage import morphology [as 别名]
# 或者: from skimage.morphology import binary_erosion [as 别名]
def sprengel_binary_mask_from_wave_file(filepath):
fs, x = utils.read_wave_file(filepath)
Sxx = sp.wave_to_amplitude_spectrogram(x, fs)
Sxx_log = sp.wave_to_log_amplitude_spectrogram(x, fs)
# plot spectrogram
fig = plt.figure(1)
subplot_image(Sxx_log, 411, "Spectrogram")
Sxx = pp.normalize(Sxx)
binary_image = pp.median_clipping(Sxx, 3.0)
subplot_image(binary_image + 0, 412, "Median Clipping")
binary_image = morphology.binary_erosion(binary_image, selem=np.ones((4, 4)))
subplot_image(binary_image + 0, 413, "Erosion")
binary_image = morphology.binary_dilation(binary_image, selem=np.ones((4, 4)))
subplot_image(binary_image + 0, 414, "Dilation")
mask = np.array([np.max(col) for col in binary_image.T])
mask = morphology.binary_dilation(mask, np.ones(4))
mask = morphology.binary_dilation(mask, np.ones(4))
# plot_vector(mask, "Mask")
fig.set_size_inches(10, 12)
plt.tight_layout()
fig.savefig(utils.get_basename_without_ext(filepath) + "_binary_mask.png", dpi=100)
示例8: create_mask
# 需要导入模块: from skimage import morphology [as 别名]
# 或者: from skimage.morphology import binary_erosion [as 别名]
def create_mask(aseg_data, dnum, enum):
from skimage.morphology import binary_dilation, binary_erosion
from skimage.measure import label
print ("Creating dilated mask ...")
# treat lateral orbital frontal and parsorbitalis special to avoid capturing too much of eye nerve
lat_orb_front_mask = np.logical_or(aseg_data == 2012, aseg_data == 1012)
parsorbitalis_mask = np.logical_or(aseg_data == 2019, aseg_data == 1019)
frontal_mask = np.logical_or(lat_orb_front_mask, parsorbitalis_mask)
print("Frontal region special treatment: ", format(np.sum(frontal_mask)))
# reduce to binary
datab = (aseg_data > 0)
datab[frontal_mask] = 0
# dilate and erode
for x in range(dnum):
datab = binary_dilation(datab, np.ones((3, 3, 3)))
for x in range(enum):
datab = binary_erosion(datab, np.ones((3, 3, 3)))
# extract largest component
labels = label(datab)
assert (labels.max() != 0) # assume at least 1 real connected component
print(" Found {} connected component(s)!".format(labels.max()))
if labels.max() > 1:
print(" Selecting largest component!")
datab = (labels == np.argmax(np.bincount(labels.flat)[1:]) + 1)
# add frontal regions back to mask
datab[frontal_mask] = 1
# set mask
aseg_data[~datab] = 0
aseg_data[datab] = 1
return aseg_data
示例9: get_simple_eroded_mask
# 需要导入模块: from skimage import morphology [as 别名]
# 或者: from skimage.morphology import binary_erosion [as 别名]
def get_simple_eroded_mask(mask, selem_size, small_annotations_size):
if mask.sum() > small_annotations_size**2:
selem = rectangle(selem_size, selem_size)
mask_eroded = binary_erosion(mask, selem=selem)
else:
mask_eroded = mask
return mask_eroded
示例10: get_simple_eroded_dilated_mask
# 需要导入模块: from skimage import morphology [as 别名]
# 或者: from skimage.morphology import binary_erosion [as 别名]
def get_simple_eroded_dilated_mask(mask, erode_selem_size, dilate_selem_size, small_annotations_size):
if mask.sum() > small_annotations_size**2:
selem = rectangle(erode_selem_size, erode_selem_size)
mask_ = binary_erosion(mask, selem=selem)
else:
selem = rectangle(dilate_selem_size, dilate_selem_size)
mask_ = binary_dilation(mask, selem=selem)
return mask_
示例11: postprocessing
# 需要导入模块: from skimage import morphology [as 别名]
# 或者: from skimage.morphology import binary_erosion [as 别名]
def postprocessing(prediction, threshold=0.75, dataset='G'):
if dataset[0] == 'D':
prediction = prediction.numpy()
prediction_copy = np.copy(prediction)
disc_mask = prediction[1]
cup_mask = prediction[0]
disc_mask = (disc_mask > 0.5) # return binary mask
cup_mask = (cup_mask > 0.1) # return binary mask
disc_mask = disc_mask.astype(np.uint8)
cup_mask = cup_mask.astype(np.uint8)
for i in range(5):
disc_mask = scipy.signal.medfilt2d(disc_mask, 7)
cup_mask = scipy.signal.medfilt2d(cup_mask, 7)
disc_mask = morphology.binary_erosion(disc_mask, morphology.diamond(7)).astype(np.uint8) # return 0,1
cup_mask = morphology.binary_erosion(cup_mask, morphology.diamond(7)).astype(np.uint8) # return 0,1
disc_mask = get_largest_fillhole(disc_mask).astype(np.uint8) # return 0,1
cup_mask = get_largest_fillhole(cup_mask).astype(np.uint8)
prediction_copy[0] = cup_mask
prediction_copy[1] = disc_mask
return prediction_copy
else:
prediction = prediction.numpy()
prediction = (prediction > threshold) # return binary mask
prediction = prediction.astype(np.uint8)
prediction_copy = np.copy(prediction)
disc_mask = prediction[1]
cup_mask = prediction[0]
for i in range(5):
disc_mask = scipy.signal.medfilt2d(disc_mask, 7)
cup_mask = scipy.signal.medfilt2d(cup_mask, 7)
disc_mask = morphology.binary_erosion(disc_mask, morphology.diamond(7)).astype(np.uint8) # return 0,1
cup_mask = morphology.binary_erosion(cup_mask, morphology.diamond(7)).astype(np.uint8) # return 0,1
disc_mask = get_largest_fillhole(disc_mask).astype(np.uint8) # return 0,1
cup_mask = get_largest_fillhole(cup_mask).astype(np.uint8)
prediction_copy[0] = cup_mask
prediction_copy[1] = disc_mask
return prediction_copy
示例12: get_segmented_lungs
# 需要导入模块: from skimage import morphology [as 别名]
# 或者: from skimage.morphology import binary_erosion [as 别名]
def get_segmented_lungs(im, plot=False):
# Step 1: Convert into a binary image.
binary = im < -400
# Step 2: Remove the blobs connected to the border of the image.
cleared = clear_border(binary)
# Step 3: Label the image.
label_image = label(cleared)
# Step 4: Keep the labels with 2 largest areas.
areas = [r.area for r in regionprops(label_image)]
areas.sort()
if len(areas) > 2:
for region in regionprops(label_image):
if region.area < areas[-2]:
for coordinates in region.coords:
label_image[coordinates[0], coordinates[1]] = 0
binary = label_image > 0
# Step 5: Erosion operation with a disk of radius 2. This operation is seperate the lung nodules attached to the blood vessels.
selem = disk(2)
binary = binary_erosion(binary, selem)
# Step 6: Closure operation with a disk of radius 10. This operation is to keep nodules attached to the lung wall.
selem = disk(10) # CHANGE BACK TO 10
binary = binary_closing(binary, selem)
# Step 7: Fill in the small holes inside the binary mask of lungs.
edges = roberts(binary)
binary = ndi.binary_fill_holes(edges)
# Step 8: Superimpose the binary mask on the input image.
get_high_vals = binary == 0
im[get_high_vals] = -2000
return im, binary
示例13: postprocess
# 需要导入模块: from skimage import morphology [as 别名]
# 或者: from skimage.morphology import binary_erosion [as 别名]
def postprocess(preds, config):
assert preds.shape[2]==5
ldelta = delta(preds[:,:,1:])
#ldelta = delta0(preds[:,:,5:])
connected = np.all(ldelta>config.GRADIENT_THRES, 2)
base = connected * (preds[:,:,0]>config.MASK_THRES)
wall = np.sum(np.abs(preds[:,:,1:]),axis = -1)
base_label = label(base)
vals, counts = np.unique(base_label[base_label>0], return_counts=True)
for val in vals[(counts<config.CLIP_AREA_LOW)]:
base_label[base_label==val]=0
vals = vals[(counts>=config.CLIP_AREA_LOW)]
for val in vals:
label_mask = base_label == val
if np.sum(label_mask)==0:
continue
label_mask = remove_small_holes(label_mask)
label_mask = basin(label_mask, wall)
label_mask = remove_small_holes(label_mask)
'''
label_bdr = label_mask^binary_erosion(label_mask)
min_wall = np.min(wall[label_mask])
ave_bdr_wall = np.mean(wall[label_bdr])
if ave_bdr_wall < min_wall + config.WALL_DEPTH:
label_mask = 0
'''
base_label[label_mask] = val
vals, counts = np.unique(base_label[base_label>0], return_counts=True)
for val in vals[(counts<config.CLIP_AREA_LOW)]:
base_label[base_label==val]=0
return base_label
示例14: unet_candidates
# 需要导入模块: from skimage import morphology [as 别名]
# 或者: from skimage.morphology import binary_erosion [as 别名]
def unet_candidates():
cands = glob.glob("../data/predictions_epoch9_23_all/*.png")
#df = pd.DataFrame(columns=['seriesuid','coordX','coordY','coordZ','class'])
data = []
imname = ""
origin = []
spacing = []
nrimages = 0
for name in tqdm(cands):
#image = imread(name)
image_t = imread(name)
image_t = image_t.transpose()
#Thresholding
image_t[image_t<THRESHOLD] = 0
image_t[image_t>0] = 1
#erosion
selem = morphology.disk(1)
image_eroded = image_t
image_eroded = morphology.binary_erosion(image_t,selem=selem)
label_im, nb_labels = ndimage.label(image_eroded)
imname3 = os.path.split(name)[1].replace('.png','')
splitted = imname3.split("slice")
slice = splitted[1]
imname2 = splitted[0][:-1]
centers = []
for i in xrange(1,nb_labels+1):
blob_i = np.where(label_im==i,1,0)
mass = center_of_mass(blob_i)
centers.append([mass[1],mass[0]])
if imname2 != imname:
if os.path.isfile("../data/1_1_1mm_512_x_512_annotation_masks/spacings/{0}.pickle".format(imname2)):
with open("../data/1_1_1mm_512_x_512_annotation_masks/spacings/{0}.pickle".format(imname2), 'rb') as handle:
dic = pickle.load(handle)
origin = dic["origin"]
spacing = dic["spacing"]
imname = imname2
nrimages +=1
for center in centers:
coords = voxel_2_world([int(slice),center[1]+(512-324)*0.5,center[0]+(512-324)*0.5],origin,spacing)
data.append([imname2,coords[2],coords[1],coords[0],'?'])
#if nrimages == 5:
# break
df = pd.DataFrame(data,columns=CANDIDATES_COLUMNS)
save_candidates("../data/candidates_unet_final_23.csv",df)