本文整理汇总了Python中skimage.measure.ransac方法的典型用法代码示例。如果您正苦于以下问题:Python measure.ransac方法的具体用法?Python measure.ransac怎么用?Python measure.ransac使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类skimage.measure
的用法示例。
在下文中一共展示了measure.ransac方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: get_inliers
# 需要导入模块: from skimage import measure [as 别名]
# 或者: from skimage.measure import ransac [as 别名]
def get_inliers(loc1, desc1, loc2, desc2):
n_feat1, n_feat2 = loc1.shape[0], loc2.shape[0]
# from scipy.spatial import cKDTree
KD_THRESH = 0.8
d1_tree = cKDTree(desc1)
distances, indices = d1_tree.query(desc2, distance_upper_bound=KD_THRESH)
loc2_to_use = np.array([
loc2[i, ] for i in range(n_feat2) if indices[i] != n_feat1])
loc1_to_use = np.array([
loc1[indices[i], ] for i in range(n_feat2) if indices[i] != n_feat1])
np.random.seed(114514)
# from skimage.measure import ransac as _ransac
# from skimage.transform import AffineTransform
model_robust, inliers = _ransac(
(loc1_to_use, loc2_to_use),
AffineTransform,
min_samples=3,
residual_threshold=20,
max_trials=1000)
return sum(inliers)
示例2: register_image_pair
# 需要导入模块: from skimage import measure [as 别名]
# 或者: from skimage.measure import ransac [as 别名]
def register_image_pair(idx, path_img_target, path_img_source, path_out):
""" register two images together
:param int idx: empty parameter for using the function in parallel
:param str path_img_target: path to the target image
:param str path_img_source: path to the source image
:param str path_out: path for exporting the output
:return tuple(str,float):
"""
start = time.time()
# load and denoise reference image
img_target = io.imread(path_img_target)
img_target = denoise_wavelet(img_target, wavelet_levels=7, multichannel=True)
img_target_gray = rgb2gray(img_target)
# load and denoise moving image
img_source = io.imread(path_img_source)
img_source = denoise_bilateral(img_source, sigma_color=0.05,
sigma_spatial=2, multichannel=True)
img_source_gray = rgb2gray(img_source)
# detect ORB features on both images
detector_target = ORB(n_keypoints=150)
detector_source = ORB(n_keypoints=150)
detector_target.detect_and_extract(img_target_gray)
detector_source.detect_and_extract(img_source_gray)
matches = match_descriptors(detector_target.descriptors,
detector_source.descriptors)
# robustly estimate affine transform model with RANSAC
model, _ = ransac((detector_target.keypoints[matches[:, 0]],
detector_source.keypoints[matches[:, 1]]),
AffineTransform, min_samples=25, max_trials=500,
residual_threshold=0.95)
# warping source image with estimated transformations
img_warped = warp(img_target, model.inverse, output_shape=img_target.shape[:2])
path_img_warped = os.path.join(path_out, NAME_IMAGE_WARPED % idx)
io.imsave(path_img_warped, img_warped)
# summarise experiment
execution_time = time.time() - start
return path_img_warped, execution_time
示例3: ransac_linefit_sklearn
# 需要导入模块: from skimage import measure [as 别名]
# 或者: from skimage.measure import ransac [as 别名]
def ransac_linefit_sklearn(points):
"""
Use sklearn ransac function to fit the line
:param points:
:return: skimage ransac return the model param set ('origin', 'direction')
"""
# robustly fit line only using inlier data with RANSAC algorithm
model_robust, inliers = ransac(points, LineModelND, min_samples=2,
residual_threshold=1, max_trials=1000)
return model_robust, inliers
示例4: segment_fit_ellipse_ransac
# 需要导入模块: from skimage import measure [as 别名]
# 或者: from skimage.measure import ransac [as 别名]
def segment_fit_ellipse_ransac(seg, centers, fn_preproc_points, nb_inliers=0.6,
thr_overlap=SEGM_OVERLAP):
""" segment eggs using ellipse fitting and RANDSAC strategy
:param ndarray seg: input image / segmentation
:param [[int, int]] centers: position of centres / seeds
:param fn_preproc_points: function for detection boundary points
:param float nb_inliers: ratio of inliers for RANSAC
:param float thr_overlap: threshold for removing overlapping segmentations
:return (ndarray, [[int, int]]): resulting segmentation, updated centres
"""
points_centers = fn_preproc_points(seg, centers)
centres_new, ell_params = [], []
segm = np.zeros_like(seg)
for i, points in enumerate(points_centers):
lb = i + 1
nb_min = int(len(points) * nb_inliers)
ransac_model, _ = measure.ransac(points, EllipseModel,
min_samples=nb_min,
residual_threshold=15,
max_trials=250)
if not ransac_model:
continue
logging.debug('ellipse params: %r', ransac_model.params)
segm = ell_fit.add_overlap_ellipse(segm, ransac_model.params, lb,
thr_overlap)
if np.any(segm == lb):
centres_new.append(centers[i])
ell_params.append(ransac_model.params)
dict_export = {'ellipses.csv': pd.DataFrame(ell_params, columns=COLUMNS_ELLIPSE)}
return segm, np.array(centres_new), dict_export
示例5: estimateF
# 需要导入模块: from skimage import measure [as 别名]
# 或者: from skimage.measure import ransac [as 别名]
def estimateF(img1, img2):
np.random.seed(0)
#img1, img2, groundtruth_disp = data.stereo_motorcycle()
img1_gray, img2_gray = map(rgb2gray, (img1, img2))
descriptor_extractor = ORB()
descriptor_extractor.detect_and_extract(img1_gray)
keypoints_left = descriptor_extractor.keypoints
descriptors_left = descriptor_extractor.descriptors
descriptor_extractor.detect_and_extract(img2_gray)
keypoints_right = descriptor_extractor.keypoints
descriptors_right = descriptor_extractor.descriptors
matches = match_descriptors(descriptors_left, descriptors_right,
cross_check=True)
# Estimate the epipolar geometry between the left and right image.
model, inliers = ransac((keypoints_left[matches[:, 0]],
keypoints_right[matches[:, 1]]),
FundamentalMatrixTransform, min_samples=8,
residual_threshold=1, max_trials=5000)
inlier_keypoints_left = keypoints_left[matches[inliers, 0]]
inlier_keypoints_right = keypoints_right[matches[inliers, 1]]
print("Number of matches:", matches.shape[0])
print("Number of inliers:", inliers.sum())
# Visualize the results.
'''
fig, ax = plt.subplots(nrows=2, ncols=1)
plt.gray()
plot_matches(ax[0], img1, img2, keypoints_left, keypoints_right,
matches[inliers], only_matches=True)
ax[0].axis("off")
ax[0].set_title("Inlier correspondences")
plt.show()
'''
#import pdb; pdb.set_trace()
return model, matches.shape[0], inliers.sum(), inlier_keypoints_left, inlier_keypoints_right
示例6: match_frames
# 需要导入模块: from skimage import measure [as 别名]
# 或者: from skimage.measure import ransac [as 别名]
def match_frames(f1, f2):
bf = cv2.BFMatcher(cv2.NORM_HAMMING)
matches = bf.knnMatch(f1.des, f2.des, k=2)
# Lowe's ratio test
ret = []
idx1, idx2 = [], []
idx1s, idx2s = set(), set()
for m,n in matches:
if m.distance < 0.75*n.distance:
p1 = f1.kps[m.queryIdx]
p2 = f2.kps[m.trainIdx]
# be within orb distance 32
if m.distance < 32:
# keep around indices
# TODO: refactor this to not be O(N^2)
if m.queryIdx not in idx1s and m.trainIdx not in idx2s:
idx1.append(m.queryIdx)
idx2.append(m.trainIdx)
idx1s.add(m.queryIdx)
idx2s.add(m.trainIdx)
ret.append((p1, p2))
# no duplicates
assert(len(set(idx1)) == len(idx1))
assert(len(set(idx2)) == len(idx2))
assert len(ret) >= 8
ret = np.array(ret)
idx1 = np.array(idx1)
idx2 = np.array(idx2)
# fit matrix
model, inliers = ransac((ret[:, 0], ret[:, 1]),
EssentialMatrixTransform,
min_samples=8,
residual_threshold=RANSAC_RESIDUAL_THRES,
max_trials=RANSAC_MAX_TRIALS)
print("Matches: %d -> %d -> %d -> %d" % (len(f1.des), len(matches), len(inliers), sum(inliers)))
return idx1[inliers], idx2[inliers], fundamentalToRt(model.params)
示例7: main
# 需要导入模块: from skimage import measure [as 别名]
# 或者: from skimage.measure import ransac [as 别名]
def main(unused_argv):
tf.logging.set_verbosity(tf.logging.INFO)
# Read features.
locations_1, _, descriptors_1, _, _ = feature_io.ReadFromFile(
cmd_args.features_1_path)
num_features_1 = locations_1.shape[0]
tf.logging.info("Loaded image 1's %d features" % num_features_1)
locations_2, _, descriptors_2, _, _ = feature_io.ReadFromFile(
cmd_args.features_2_path)
num_features_2 = locations_2.shape[0]
tf.logging.info("Loaded image 2's %d features" % num_features_2)
# Find nearest-neighbor matches using a KD tree.
d1_tree = cKDTree(descriptors_1)
distances, indices = d1_tree.query(
descriptors_2, distance_upper_bound=_DISTANCE_THRESHOLD)
# Select feature locations for putative matches.
locations_2_to_use = np.array([
locations_2[i,] for i in range(num_features_2)
if indices[i] != num_features_1
])
locations_1_to_use = np.array([
locations_1[indices[i],] for i in range(num_features_2)
if indices[i] != num_features_1
])
# Perform geometric verification using RANSAC.
model_robust, inliers = ransac(
(locations_1_to_use, locations_2_to_use),
AffineTransform,
min_samples=3,
residual_threshold=20,
max_trials=1000)
tf.logging.info('Found %d inliers' % sum(inliers))
# Visualize correspondences, and save to file.
fig, ax = plt.subplots()
img_1 = mpimg.imread(cmd_args.image_1_path)
img_2 = mpimg.imread(cmd_args.image_2_path)
inlier_idxs = np.nonzero(inliers)[0]
plot_matches(
ax,
img_1,
img_2,
locations_1_to_use,
locations_2_to_use,
np.column_stack((inlier_idxs, inlier_idxs)),
matches_color='b')
ax.axis('off')
ax.set_title('DELF correspondences')
plt.savefig(cmd_args.output_image)
示例8: main
# 需要导入模块: from skimage import measure [as 别名]
# 或者: from skimage.measure import ransac [as 别名]
def main(unused_argv):
tf.logging.set_verbosity(tf.logging.INFO)
# Read features.
locations_1, _, descriptors_1, _, _ = feature_io.ReadFromFile(
cmd_args.features_1_path)
num_features_1 = locations_1.shape[0]
tf.logging.info("Loaded image 1's %d features" % num_features_1)
locations_2, _, descriptors_2, _, _ = feature_io.ReadFromFile(
cmd_args.features_2_path)
num_features_2 = locations_2.shape[0]
tf.logging.info("Loaded image 2's %d features" % num_features_2)
# Find nearest-neighbor matches using a KD tree.
d1_tree = cKDTree(descriptors_1)
_, indices = d1_tree.query(
descriptors_2, distance_upper_bound=_DISTANCE_THRESHOLD)
# Select feature locations for putative matches.
locations_2_to_use = np.array([
locations_2[i,]
for i in range(num_features_2)
if indices[i] != num_features_1
])
locations_1_to_use = np.array([
locations_1[indices[i],]
for i in range(num_features_2)
if indices[i] != num_features_1
])
# Perform geometric verification using RANSAC.
_, inliers = ransac(
(locations_1_to_use, locations_2_to_use),
AffineTransform,
min_samples=3,
residual_threshold=20,
max_trials=1000)
tf.logging.info('Found %d inliers' % sum(inliers))
# Visualize correspondences, and save to file.
_, ax = plt.subplots()
img_1 = mpimg.imread(cmd_args.image_1_path)
img_2 = mpimg.imread(cmd_args.image_2_path)
inlier_idxs = np.nonzero(inliers)[0]
plot_matches(
ax,
img_1,
img_2,
locations_1_to_use,
locations_2_to_use,
np.column_stack((inlier_idxs, inlier_idxs)),
matches_color='b')
ax.axis('off')
ax.set_title('DELF correspondences')
plt.savefig(cmd_args.output_image)
示例9: main
# 需要导入模块: from skimage import measure [as 别名]
# 或者: from skimage.measure import ransac [as 别名]
def main(unused_argv):
# Read features.
locations_1, _, descriptors_1, _, _ = feature_io.ReadFromFile(
cmd_args.features_1_path)
num_features_1 = locations_1.shape[0]
print(f"Loaded image 1's {num_features_1} features")
locations_2, _, descriptors_2, _, _ = feature_io.ReadFromFile(
cmd_args.features_2_path)
num_features_2 = locations_2.shape[0]
print(f"Loaded image 2's {num_features_2} features")
# Find nearest-neighbor matches using a KD tree.
d1_tree = spatial.cKDTree(descriptors_1)
_, indices = d1_tree.query(
descriptors_2, distance_upper_bound=_DISTANCE_THRESHOLD)
# Select feature locations for putative matches.
locations_2_to_use = np.array([
locations_2[i,]
for i in range(num_features_2)
if indices[i] != num_features_1
])
locations_1_to_use = np.array([
locations_1[indices[i],]
for i in range(num_features_2)
if indices[i] != num_features_1
])
# Perform geometric verification using RANSAC.
_, inliers = measure.ransac((locations_1_to_use, locations_2_to_use),
transform.AffineTransform,
min_samples=3,
residual_threshold=20,
max_trials=1000)
print(f'Found {sum(inliers)} inliers')
# Visualize correspondences, and save to file.
_, ax = plt.subplots()
img_1 = mpimg.imread(cmd_args.image_1_path)
img_2 = mpimg.imread(cmd_args.image_2_path)
inlier_idxs = np.nonzero(inliers)[0]
feature.plot_matches(
ax,
img_1,
img_2,
locations_1_to_use,
locations_2_to_use,
np.column_stack((inlier_idxs, inlier_idxs)),
matches_color='b')
ax.axis('off')
ax.set_title('DELF correspondences')
plt.savefig(cmd_args.output_image)