本文整理汇总了Python中skimage.filters.median方法的典型用法代码示例。如果您正苦于以下问题:Python filters.median方法的具体用法?Python filters.median怎么用?Python filters.median使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类skimage.filters
的用法示例。
在下文中一共展示了filters.median方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: compute_binary_mask_sprengel
# 需要导入模块: from skimage import filters [as 别名]
# 或者: from skimage.filters import median [as 别名]
def compute_binary_mask_sprengel(spectrogram, threshold):
""" Computes a binary mask for the spectrogram
# Arguments
spectrogram : a numpy array representation of a spectrogram (2-dim)
threshold : a threshold for times larger than the median
# Returns
binary_mask : the binary mask
"""
# normalize to [0, 1)
norm_spectrogram = normalize(spectrogram)
# median clipping
binary_image = median_clipping(norm_spectrogram, threshold)
# erosion
binary_image = morphology.binary_erosion(binary_image, selem=np.ones((4, 4)))
# dilation
binary_image = morphology.binary_dilation(binary_image, selem=np.ones((4, 4)))
# extract mask
mask = np.array([np.max(col) for col in binary_image.T])
mask = smooth_mask(mask)
return mask
示例2: median_clipping
# 需要导入模块: from skimage import filters [as 别名]
# 或者: from skimage.filters import median [as 别名]
def median_clipping(spectrogram, number_times_larger):
""" Compute binary image from spectrogram where cells are marked as 1 if
number_times_larger than the row AND column median, otherwise 0
"""
row_medians = np.median(spectrogram, axis=1)
col_medians = np.median(spectrogram, axis=0)
# create 2-d array where each cell contains row median
row_medians_cond = np.tile(row_medians, (spectrogram.shape[1], 1)).transpose()
# create 2-d array where each cell contains column median
col_medians_cond = np.tile(col_medians, (spectrogram.shape[0], 1))
# find cells number_times_larger than row and column median
larger_row_median = spectrogram >= row_medians_cond*number_times_larger
larger_col_median = spectrogram >= col_medians_cond*number_times_larger
# create binary image with cells number_times_larger row AND col median
binary_image = np.logical_and(larger_row_median, larger_col_median)
return binary_image
示例3: subtract_background_median
# 需要导入模块: from skimage import filters [as 别名]
# 或者: from skimage.filters import median [as 别名]
def subtract_background_median(z, footprint):
"""Remove background using a median filter.
Parameters
----------
footprint : int
size of the window that is convoluted with the array to determine
the median. Should be large enough that it is about 3x as big as the
size of the peaks.
Returns
-------
Pattern with background subtracted as np.array
"""
selem = morphology.square(footprint)
# skimage only accepts input image as uint16
bg_subtracted = z - filters.median(z.astype(np.uint16), selem).astype(z.dtype)
return np.maximum(bg_subtracted, 0)
示例4: compute_binary_mask_lasseck
# 需要导入模块: from skimage import filters [as 别名]
# 或者: from skimage.filters import median [as 别名]
def compute_binary_mask_lasseck(spectrogram, threshold):
# normalize to [0, 1)
norm_spectrogram = normalize(spectrogram)
# median clipping
binary_image = median_clipping(norm_spectrogram, threshold)
# closing binary image (dilation followed by erosion)
binary_image = morphology.binary_closing(binary_image, selem=np.ones((4, 4)))
# dialate binary image
binary_image = morphology.binary_dilation(binary_image, selem=np.ones((4, 4)))
# apply median filter
binary_image = filters.median(binary_image, selem=np.ones((2, 2)))
# remove small objects
binary_image = morphology.remove_small_objects(binary_image, min_size=32, connectivity=1)
mask = np.array([np.max(col) for col in binary_image.T])
mask = smooth_mask(mask)
return mask
# TODO: This method needs some real testing
示例5: compute_median
# 需要导入模块: from skimage import filters [as 别名]
# 或者: from skimage.filters import median [as 别名]
def compute_median(img, params):
median_disk_size = int(params.get("median_disk_size", 3))
return median(rgb2gray(img), selem=disk(median_disk_size))[:, :, None]
示例6: auto_liver_mask
# 需要导入模块: from skimage import filters [as 别名]
# 或者: from skimage.filters import median [as 别名]
def auto_liver_mask(vol, ths = [(80, 140), (110, 160), (70, 90), (60, 80), (50, 70), (40, 60), (30, 50), (20, 40), (10, 30), (140, 180), (160, 200)]):
vol = filters.gaussian(vol, sigma = 2, preserve_range = True)
mask = np.zeros_like(vol, dtype = np.bool)
max_area = 0
for th_lo, th_hi in ths:
print(th_lo, th_hi)
bw = np.ones_like(vol, dtype = np.bool)
bw[vol < th_lo] = 0
bw[vol > th_hi] = 0
if np.sum(bw) <= max_area:
continue
with concurrent.futures.ProcessPoolExecutor(8) as executor:
jobs = list(range(bw.shape[-1]))
args1 = [bw[:, :, z] for z in jobs]
args2 = [morphology.disk(35) for z in jobs]
for idx, ret in tqdm.tqdm(zip(jobs, executor.map(filters.median, args1, args2)), total = len(jobs)):
bw[:, :, jobs[idx]] = ret
# for z in range(bw.shape[-1]):
# bw[:, :, z] = filters.median(bw[:, :, z], morphology.disk(35))
if np.sum(bw) <= max_area:
continue
labeled_seg = measure.label(bw, connectivity=1)
regions = measure.regionprops(labeled_seg)
max_region = max(regions, key = lambda x: x.area)
if max_region.area <= max_area:
continue
max_area = max_region.area
mask = labeled_seg == max_region.label
assert max_area > 0, 'Failed to find the liver area!'
return mask
示例7: strange_method
# 需要导入模块: from skimage import filters [as 别名]
# 或者: from skimage.filters import median [as 别名]
def strange_method(self, _idx, img0, msk0, lbl0, x0, y0):
input_shape = self.input_shape
good4copy = self.all_good4copy[_idx]
img = img0[y0:y0 + input_shape[0], x0:x0 + input_shape[1], :]
msk = msk0[y0:y0 + input_shape[0], x0:x0 + input_shape[1], :]
if len(good4copy) > 0 and random.random() > 0.75:
num_copy = random.randrange(1, min(6, len(good4copy) + 1))
lbl_max = lbl0.max()
for i in range(num_copy):
lbl_max += 1
l_id = random.choice(good4copy)
lbl_msk = self.all_labels[_idx] == l_id
row, col = np.where(lbl_msk)
y1, x1 = np.min(np.where(lbl_msk), axis=1)
y2, x2 = np.max(np.where(lbl_msk), axis=1)
lbl_msk = lbl_msk[y1:y2 + 1, x1:x2 + 1]
lbl_img = img0[y1:y2 + 1, x1:x2 + 1, :]
if random.random() > 0.5:
lbl_msk = lbl_msk[:, ::-1, ...]
lbl_img = lbl_img[:, ::-1, ...]
rot = random.randrange(4)
if rot > 0:
lbl_msk = np.rot90(lbl_msk, k=rot)
lbl_img = np.rot90(lbl_img, k=rot)
x1 = random.randint(max(0, x0 - lbl_msk.shape[1] // 2),
min(img0.shape[1] - lbl_msk.shape[1], x0 + input_shape[1] - lbl_msk.shape[1] // 2))
y1 = random.randint(max(0, y0 - lbl_msk.shape[0] // 2),
min(img0.shape[0] - lbl_msk.shape[0], y0 + input_shape[0] - lbl_msk.shape[0] // 2))
tmp = erosion(lbl_msk, square(5))
lbl_msk_dif = lbl_msk ^ tmp
tmp = dilation(lbl_msk, square(5))
lbl_msk_dif = lbl_msk_dif | (tmp ^ lbl_msk)
lbl0[y1:y1 + lbl_msk.shape[0], x1:x1 + lbl_msk.shape[1]][lbl_msk] = lbl_max
img0[y1:y1 + lbl_msk.shape[0], x1:x1 + lbl_msk.shape[1]][lbl_msk] = lbl_img[lbl_msk]
full_diff_mask = np.zeros_like(img0[..., 0], dtype='bool')
full_diff_mask[y1:y1 + lbl_msk.shape[0], x1:x1 + lbl_msk.shape[1]] = lbl_msk_dif
img0[..., 0][full_diff_mask] = median(img0[..., 0], mask=full_diff_mask)[full_diff_mask]
img0[..., 1][full_diff_mask] = median(img0[..., 1], mask=full_diff_mask)[full_diff_mask]
img0[..., 2][full_diff_mask] = median(img0[..., 2], mask=full_diff_mask)[full_diff_mask]
img = img0[y0:y0 + input_shape[0], x0:x0 + input_shape[1], :]
lbl = lbl0[y0:y0 + input_shape[0], x0:x0 + input_shape[1]]
msk = self.create_mask(lbl)
return img, msk
#dbg functions
示例8: copy_cells
# 需要导入模块: from skimage import filters [as 别名]
# 或者: from skimage.filters import median [as 别名]
def copy_cells(self, mask, image, label, img_id, input_shape):
img0 = image.copy()
msk0 = mask.copy()
lbl0 = label.copy()
yp = 0
xp = 0
#todo: refactor it, copied from Victor's code as is, random crops should be outside of this method
if img0.shape[0] < input_shape[0]:
yp = input_shape[0] - img0.shape[0]
if img0.shape[1] < input_shape[1]:
xp = input_shape[1] - img0.shape[1]
if xp > 0 or yp > 0:
img0 = np.pad(img0, ((0, yp), (0, xp), (0, 0)), 'constant')
msk0 = np.pad(msk0, ((0, yp), (0, xp), (0, 0)), 'constant')
lbl0 = np.pad(lbl0, ((0, yp), (0, xp)), 'constant')
good4copy = self.all_good4copy[img_id]
x0 = random.randint(0, img0.shape[1] - input_shape[1])
y0 = random.randint(0, img0.shape[0] - input_shape[0])
img = img0[y0:y0 + input_shape[0], x0:x0 + input_shape[1], :]
msk = msk0[y0:y0 + input_shape[0], x0:x0 + input_shape[1], :]
lbl = lbl0[y0:y0 + input_shape[0], x0:x0 + input_shape[1]]
if len(good4copy) > 0 and random.random() < 0.05:
num_copy = random.randrange(1, min(6, len(good4copy) + 1))
lbl_max = lbl0.max()
for i in range(num_copy):
lbl_max += 1
l_id = random.choice(good4copy)
lbl_msk = label == l_id
y1, x1 = np.min(np.where(lbl_msk), axis=1)
y2, x2 = np.max(np.where(lbl_msk), axis=1)
lbl_msk = lbl_msk[y1:y2 + 1, x1:x2 + 1]
lbl_img = img0[y1:y2 + 1, x1:x2 + 1, :]
if random.random() > 0.5:
lbl_msk = lbl_msk[:, ::-1, ...]
lbl_img = lbl_img[:, ::-1, ...]
rot = random.randrange(4)
if rot > 0:
lbl_msk = np.rot90(lbl_msk, k=rot)
lbl_img = np.rot90(lbl_img, k=rot)
x1 = random.randint(max(0, x0 - lbl_msk.shape[1] // 2),
min(img0.shape[1] - lbl_msk.shape[1], x0 + input_shape[1] - lbl_msk.shape[1] // 2))
y1 = random.randint(max(0, y0 - lbl_msk.shape[0] // 2),
min(img0.shape[0] - lbl_msk.shape[0], y0 + input_shape[0] - lbl_msk.shape[0] // 2))
tmp = erosion(lbl_msk, square(5))
lbl_msk_dif = lbl_msk ^ tmp
tmp = dilation(lbl_msk, square(5))
lbl_msk_dif = lbl_msk_dif | (tmp ^ lbl_msk)
lbl0[y1:y1 + lbl_msk.shape[0], x1:x1 + lbl_msk.shape[1]][lbl_msk] = lbl_max
img0[y1:y1 + lbl_msk.shape[0], x1:x1 + lbl_msk.shape[1]][lbl_msk] = lbl_img[lbl_msk]
full_diff_mask = np.zeros_like(img0[..., 0], dtype='bool')
full_diff_mask[y1:y1 + lbl_msk.shape[0], x1:x1 + lbl_msk.shape[1]] = lbl_msk_dif
img0[..., 0][full_diff_mask] = median(img0[..., 0], mask=full_diff_mask)[full_diff_mask]
img0[..., 1][full_diff_mask] = median(img0[..., 1], mask=full_diff_mask)[full_diff_mask]
img0[..., 2][full_diff_mask] = median(img0[..., 2], mask=full_diff_mask)[full_diff_mask]
img = img0[y0:y0 + input_shape[0], x0:x0 + input_shape[1], :]
lbl = lbl0[y0:y0 + input_shape[0], x0:x0 + input_shape[1]]
msk = self.create_mask(lbl)
return msk, img, lbl