本文整理汇总了Python中skimage.exposure.equalize_hist方法的典型用法代码示例。如果您正苦于以下问题:Python exposure.equalize_hist方法的具体用法?Python exposure.equalize_hist怎么用?Python exposure.equalize_hist使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类skimage.exposure
的用法示例。
在下文中一共展示了exposure.equalize_hist方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: rgb2illumination_invariant
# 需要导入模块: from skimage import exposure [as 别名]
# 或者: from skimage.exposure import equalize_hist [as 别名]
def rgb2illumination_invariant(img, alpha, hist_eq=False):
"""
this is an implementation of the illuminant-invariant color space published
by Maddern2014
http://www.robots.ox.ac.uk/~mobile/Papers/2014ICRA_maddern.pdf
:param img:
:param alpha: camera paramete
:return:
"""
ii_img = 0.5 + np.log(img[:, :, 1] + 1e-8) - \
alpha * np.log(img[:, :, 2] + 1e-8) - \
(1 - alpha) * np.log(img[:, :, 0] + 1e-8)
# ii_img = exposure.rescale_intensity(ii_img, out_range=(0, 1))
if hist_eq:
ii_img = exposure.equalize_hist(ii_img)
print np.max(ii_img)
print np.min(ii_img)
return ii_img
示例2: three_band_image
# 需要导入模块: from skimage import exposure [as 别名]
# 或者: from skimage.exposure import equalize_hist [as 别名]
def three_band_image(ds, bands, time=0, figsize=[10, 10], projection='projected'):
'''
three_band_image takes three spectral bands and plots them on the RGB bands of an image.
Inputs:
ds - Dataset containing the bands to be plotted
bands - list of three bands to be plotted
Optional:
time - Index value of the time dimension of ds to be plotted
figsize - dimensions for the output figure
projection - options are 'projected' or 'geographic'. To determine if the image is in degrees or northings
'''
t, y, x = ds[bands[0]].shape
rawimg = np.zeros((y, x, 3), dtype=np.float32)
for i, colour in enumerate(bands):
rawimg[:, :, i] = ds[colour][time].values
rawimg[rawimg == -9999] = np.nan
img_toshow = exposure.equalize_hist(rawimg, mask=np.isfinite(rawimg))
return img_toshow
示例3: loadDataGeneral
# 需要导入模块: from skimage import exposure [as 别名]
# 或者: from skimage.exposure import equalize_hist [as 别名]
def loadDataGeneral(df, path, im_shape):
X, y = [], []
for i, item in df.iterrows():
img = img_as_float(io.imread(path + item[0]))
mask = io.imread(path + item[1])
img = transform.resize(img, im_shape)
img = exposure.equalize_hist(img)
img = np.expand_dims(img, -1)
mask = transform.resize(mask, im_shape)
mask = np.expand_dims(mask, -1)
X.append(img)
y.append(mask)
X = np.array(X)
y = np.array(y)
X -= X.mean()
X /= X.std()
print '### Dataset loaded'
print '\t{}'.format(path)
print '\t{}\t{}'.format(X.shape, y.shape)
print '\tX:{:.1f}-{:.1f}\ty:{:.1f}-{:.1f}\n'.format(X.min(), X.max(), y.min(), y.max())
print '\tX.mean = {}, X.std = {}'.format(X.mean(), X.std())
return X, y
示例4: loadDataGeneral
# 需要导入模块: from skimage import exposure [as 别名]
# 或者: from skimage.exposure import equalize_hist [as 别名]
def loadDataGeneral(df, path, im_shape):
"""Function for loading arbitrary data in standard formats"""
X, y = [], []
for i, item in df.iterrows():
img = img_as_float(io.imread(path + item[0]))
mask = io.imread(path + item[1])
img = transform.resize(img, im_shape)
img = exposure.equalize_hist(img)
img = np.expand_dims(img, -1)
mask = transform.resize(mask, im_shape)
mask = np.expand_dims(mask, -1)
X.append(img)
y.append(mask)
X = np.array(X)
y = np.array(y)
X -= X.mean()
X /= X.std()
print '### Dataset loaded'
print '\t{}'.format(path)
print '\t{}\t{}'.format(X.shape, y.shape)
print '\tX:{:.1f}-{:.1f}\ty:{:.1f}-{:.1f}\n'.format(X.min(), X.max(), y.min(), y.max())
print '\tX.mean = {}, X.std = {}'.format(X.mean(), X.std())
return X, y
示例5: LSTConvolue
# 需要导入模块: from skimage import exposure [as 别名]
# 或者: from skimage.exposure import equalize_hist [as 别名]
def LSTConvolue(self):
kernel_rate= np.array([[1/8, 1/8 , 1/8],
[1/8, -1, 1/8],
[1/8, 1/8, 1/8]]) #卷积核
kernel_id= np.array([[-1, -1 ,-1],
[-1 ,8, -1],
[-1, -1, -1]]) #卷积核
kernel=kernel_rate
t0=time.time()
# print(self.LST)
array_convolve2d=convolve2d(self.LST,kernel,mode='same')*-1
# print(array_convolve2d.max(),array_convolve2d.min())
# array_convolve2d=exposure.equalize_hist(array_convolve2d)
p2, p98 = np.percentile(array_convolve2d, (2,96))
array_convolve2dRescale = exposure.rescale_intensity(array_convolve2d, in_range=(p2, p98))
# print()
array_convolve2dZero=np.copy(array_convolve2d)
array_convolve2dZero[array_convolve2dZero>0]=1
array_convolve2dZero[array_convolve2dZero<0]=-1
array_convolve2dZero[array_convolve2dZero==0]=0
t1=time.time()
t_convolve2d=t1-t0
print("lasting time:",t_convolve2d)
self.imgShow(imges=(self.LST,array_convolve2dRescale,array_convolve2dZero),titleName=("array","array_convolve2d_rescale","0",),xyticksRange=(1,1))
return array_convolve2d,array_convolve2dZero
##显示图像
示例6: loadDataMontgomery
# 需要导入模块: from skimage import exposure [as 别名]
# 或者: from skimage.exposure import equalize_hist [as 别名]
def loadDataMontgomery(df, path, im_shape):
"""Function for loading Montgomery dataset"""
X, y = [], []
for i, item in df.iterrows():
img = img_as_float(io.imread(path + item[0]))
gt = io.imread(path + item[1])
l, r = np.where(img.sum(0) > 1)[0][[0, -1]]
t, b = np.where(img.sum(1) > 1)[0][[0, -1]]
img = img[t:b, l:r]
mask = gt[t:b, l:r]
img = transform.resize(img, im_shape)
img = exposure.equalize_hist(img)
img = np.expand_dims(img, -1)
mask = transform.resize(mask, im_shape)
mask = np.expand_dims(mask, -1)
X.append(img)
y.append(mask)
X = np.array(X)
y = np.array(y)
X -= X.mean()
X /= X.std()
print '### Data loaded'
print '\t{}'.format(path)
print '\t{}\t{}'.format(X.shape, y.shape)
print '\tX:{:.1f}-{:.1f}\ty:{:.1f}-{:.1f}\n'.format(X.min(), X.max(), y.min(), y.max())
print '\tX.mean = {}, X.std = {}'.format(X.mean(), X.std())
return X, y
示例7: make_lungs
# 需要导入模块: from skimage import exposure [as 别名]
# 或者: from skimage.exposure import equalize_hist [as 别名]
def make_lungs():
path = '/path/to/JSRT/All247images/'
for i, filename in enumerate(os.listdir(path)):
img = 1.0 - np.fromfile(path + filename, dtype='>u2').reshape((2048, 2048)) * 1. / 4096
img = exposure.equalize_hist(img)
io.imsave('/path/to/JSRT/new/' + filename[:-4] + '.png', img)
print 'Lung', i, filename
示例8: adaptive_equalize
# 需要导入模块: from skimage import exposure [as 别名]
# 或者: from skimage.exposure import equalize_hist [as 别名]
def adaptive_equalize(img):
# Adaptive Equalization
img = img_as_float(img)
img_adapteq = exposure.equalize_hist(img)
return img_adapteq