当前位置: 首页>>代码示例>>Python>>正文


Python color.rgb2lab方法代码示例

本文整理汇总了Python中skimage.color.rgb2lab方法的典型用法代码示例。如果您正苦于以下问题:Python color.rgb2lab方法的具体用法?Python color.rgb2lab怎么用?Python color.rgb2lab使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在skimage.color的用法示例。


在下文中一共展示了color.rgb2lab方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: snap_ab

# 需要导入模块: from skimage import color [as 别名]
# 或者: from skimage.color import rgb2lab [as 别名]
def snap_ab(input_l, input_rgb, return_type='rgb'):
    ''' given an input lightness and rgb, snap the color into a region where l,a,b is in-gamut
    '''
    T = 20
    warnings.filterwarnings("ignore")
    input_lab = rgb2lab_1d(np.array(input_rgb))  # convert input to lab
    conv_lab = input_lab.copy()  # keep ab from input
    for t in range(T):
        conv_lab[0] = input_l  # overwrite input l with input ab
        old_lab = conv_lab
        tmp_rgb = color.lab2rgb(conv_lab[np.newaxis, np.newaxis, :]).flatten()
        tmp_rgb = np.clip(tmp_rgb, 0, 1)
        conv_lab = color.rgb2lab(tmp_rgb[np.newaxis, np.newaxis, :]).flatten()
        dif_lab = np.sum(np.abs(conv_lab - old_lab))
        if dif_lab < 1:
            break
        # print(conv_lab)

    conv_rgb_ingamut = lab2rgb_1d(conv_lab, clip=True, dtype='uint8')
    if (return_type == 'rgb'):
        return conv_rgb_ingamut

    elif(return_type == 'lab'):
        conv_lab_ingamut = rgb2lab_1d(conv_rgb_ingamut)
        return conv_lab_ingamut 
开发者ID:junyanz,项目名称:interactive-deep-colorization,代码行数:27,代码来源:lab_gamut.py

示例2: _transform

# 需要导入模块: from skimage import color [as 别名]
# 或者: from skimage.color import rgb2lab [as 别名]
def _transform(self, filename):
        try:
            image = misc.imread(filename)
            if len(image.shape) < 3:  # make sure images are of shape(h,w,3)
                image = np.array([image for i in range(3)])

            if self.image_options.get("resize", False) and self.image_options["resize"]:
                resize_size = int(self.image_options["resize_size"])
                resize_image = misc.imresize(image,
                                             [resize_size, resize_size])
            else:
                resize_image = image

            if self.image_options.get("color", False):
                option = self.image_options['color']
                if option == "LAB":
                    resize_image = color.rgb2lab(resize_image)
                elif option == "HSV":
                    resize_image = color.rgb2hsv(resize_image)
        except:
            print ("Error reading file: %s of shape %s" % (filename, str(image.shape)))
            raise

        return np.array(resize_image) 
开发者ID:shekkizh,项目名称:Colorization.tensorflow,代码行数:26,代码来源:BatchDatsetReader.py

示例3: ransac_guess_color

# 需要导入模块: from skimage import color [as 别名]
# 或者: from skimage.color import rgb2lab [as 别名]
def ransac_guess_color(colors, n_iter=50, std=2):
    colors = rgb2lab(colors)
    colors = colors.reshape(-1, 3)
    masked = colors[:, 0] < 0.1
    colors = colors[~masked]
    assert len(colors) > 0, "Must have at least one color"

    best_mu = np.array([0, 0, 0])
    best_n = 0
    for k in range(n_iter):
        subset = colors[np.random.choice(np.arange(len(colors)), 1)]

        mu = subset.mean(0)
        #inliers = (((colors - mu) ** 2 / std) < 1).all(1)
        inliers = ((np.sqrt(np.sum((colors - mu)**2, axis=1))  / std) < 1)

        mu = colors[inliers].mean(0)
        n = len(colors[inliers])
        if n > best_n:
            best_n = n
            best_mu = mu
    #import ipdb; ipdb.set_trace()
    best_mu = np.squeeze(lab2rgb(np.array([[best_mu]])))
    return best_mu 
开发者ID:jfemiani,项目名称:facade-segmentation,代码行数:26,代码来源:megafacade.py

示例4: applyTexture

# 需要导入模块: from skimage import color [as 别名]
# 或者: from skimage.color import rgb2lab [as 别名]
def applyTexture(x, y, texture = texture_input):
	text = imread(texture_input)
	height,width = text.shape[:2]
	xmin, ymin = amin(x),amin(y)
	xmax, ymax = amax(x),amax(y)
	scale = max(((xmax - xmin + 2)/height),((ymax - ymin + 2)/width))
	text = imresize(text, scale)
	# print text.shape[:2]
	# print xmax - xmin +2, ymax - ymin+2
	X = (x-xmin).astype(int)
	Y = (y-ymin).astype(int)
	val1 = color.rgb2lab((text[X, Y]/255.).reshape(len(X), 1, 3)).reshape(len(X), 3)
	val2 = color.rgb2lab((im[x, y]/255.).reshape(len(x), 1, 3)).reshape(len(x), 3)
	L, A, B = mean(val2[:,0]), mean(val2[:,1]), mean(val2[:,2])
	val2[:, 0] = np.clip(val2[:, 0] - L + val1[:,0], 0, 100)
	val2[:, 1] = np.clip(val2[:, 1] - A + val1[:,1], -127, 128)
	val2[:, 2] = np.clip(val2[:, 2] - B + val1[:,2], -127, 128)
	im[x,y] = color.lab2rgb(val2.reshape(len(x), 1, 3)).reshape(len(x), 3)*255

# points = np.loadtxt('nailpoint_5') 
开发者ID:badarsh2,项目名称:Virtual-Makeup,代码行数:22,代码来源:nail.py

示例5: __add_color

# 需要导入模块: from skimage import color [as 别名]
# 或者: from skimage.color import rgb2lab [as 别名]
def __add_color(self, intensity):
        """ Adds base colour to all points on lips, at mentioned intensity. """
        val = color.rgb2lab(
            (self.image[self.lip_y, self.lip_x] / 255.)
            .reshape(len(self.lip_y), 1, 3)
        ).reshape(len(self.lip_y), 3)
        l_val, a_val, b_val = np.mean(val[:, 0]), np.mean(val[:, 1]), np.mean(val[:, 2])
        l1_val, a1_val, b1_val = color.rgb2lab(
            np.array(
                (self.red_l / 255., self.green_l / 255., self.blue_l / 255.)
                ).reshape(1, 1, 3)
            ).reshape(3,)
        l_final, a_final, b_final = (l1_val - l_val) * \
            intensity, (a1_val - a_val) * \
            intensity, (b1_val - b_val) * intensity
        val[:, 0] = np.clip(val[:, 0] + l_final, 0, 100)
        val[:, 1] = np.clip(val[:, 1] + a_final, -127, 128)
        val[:, 2] = np.clip(val[:, 2] + b_final, -127, 128)
        self.image[self.lip_y, self.lip_x] = color.lab2rgb(val.reshape(
            len(self.lip_y), 1, 3)).reshape(len(self.lip_y), 3) * 255 
开发者ID:hriddhidey,项目名称:visage,代码行数:22,代码来源:apply_makeup.py

示例6: _draw_process

# 需要导入模块: from skimage import color [as 别名]
# 或者: from skimage.color import rgb2lab [as 别名]
def _draw_process(self, small_input_image, big_input_image):
        lab = rgb2lab(numpy.array(small_input_image))
        lab[:, :, 0] /= 100
        small_image = self.drawer.draw(
            input_images_array=lab.astype(numpy.float32).transpose(2, 0, 1)[numpy.newaxis],
            rgb_images_array=numpy.array(self.reference_image, dtype=numpy.float32).transpose(2, 0, 1)[numpy.newaxis],
        )[0]

        small_image = small_image.convert('RGB')

        if self.drawer_sr is not None:
            drawn_panel_image = self._superresolution_process(small_image, big_input_image)
        else:
            drawn_panel_image = small_image

        return drawn_panel_image 
开发者ID:DwangoMediaVillage,项目名称:Comicolorization,代码行数:18,代码来源:panel_pipeline.py

示例7: tensorlab2tensor

# 需要导入模块: from skimage import color [as 别名]
# 或者: from skimage.color import rgb2lab [as 别名]
def tensorlab2tensor(lab_tensor,return_inbnd=False):
    from skimage import color
    import warnings
    warnings.filterwarnings("ignore")

    lab = tensor2np(lab_tensor)*100.
    lab[:,:,0] = lab[:,:,0]+50

    rgb_back = 255.*np.clip(color.lab2rgb(lab.astype('float')),0,1)
    if(return_inbnd):
        # convert back to lab, see if we match
        lab_back = color.rgb2lab(rgb_back.astype('uint8'))
        mask = 1.*np.isclose(lab_back,lab,atol=2.)
        mask = np2tensor(np.prod(mask,axis=2)[:,:,np.newaxis])
        return (im2tensor(rgb_back),mask)
    else:
        return im2tensor(rgb_back) 
开发者ID:richzhang,项目名称:PerceptualSimilarity,代码行数:19,代码来源:__init__.py

示例8: tensorlab2tensor

# 需要导入模块: from skimage import color [as 别名]
# 或者: from skimage.color import rgb2lab [as 别名]
def tensorlab2tensor(lab_tensor,return_inbnd=False):
    from skimage import color
    import warnings
    warnings.filterwarnings("ignore")

    lab = tensor2np(lab_tensor)*100.
    lab[:,:,0] = lab[:,:,0]+50
    # print('lab',lab)

    rgb_back = 255.*np.clip(color.lab2rgb(lab.astype('float')),0,1)
    # print('rgb',rgb_back)
    if(return_inbnd):
        # convert back to lab, see if we match
        lab_back = color.rgb2lab(rgb_back.astype('uint8'))
        # print('lab_back',lab_back)
        # print('lab==lab_back',np.isclose(lab_back,lab,atol=1.))
        # print('lab-lab_back',np.abs(lab-lab_back))
        mask = 1.*np.isclose(lab_back,lab,atol=2.)
        mask = np2tensor(np.prod(mask,axis=2)[:,:,np.newaxis])
        return (im2tensor(rgb_back),mask)
    else:
        return im2tensor(rgb_back) 
开发者ID:thunil,项目名称:TecoGAN,代码行数:24,代码来源:util.py

示例9: tensorlab2tensor

# 需要导入模块: from skimage import color [as 别名]
# 或者: from skimage.color import rgb2lab [as 别名]
def tensorlab2tensor(lab_tensor, return_inbnd=False):
    from skimage import color
    import warnings
    warnings.filterwarnings("ignore")

    lab = tensor2np(lab_tensor) * 100.
    lab[:, :, 0] = lab[:, :, 0] + 50
    # print('lab',lab)

    rgb_back = 255. * np.clip(color.lab2rgb(lab.astype('float')), 0, 1)
    # print('rgb',rgb_back)
    if (return_inbnd):
        # convert back to lab, see if we match
        lab_back = color.rgb2lab(rgb_back.astype('uint8'))
        # print('lab_back',lab_back)
        # print('lab==lab_back',np.isclose(lab_back,lab,atol=1.))
        # print('lab-lab_back',np.abs(lab-lab_back))
        mask = 1. * np.isclose(lab_back, lab, atol=2.)
        mask = np2tensor(np.prod(mask, axis=2)[:, :, np.newaxis])
        return (im2tensor(rgb_back), mask)
    else:
        return im2tensor(rgb_back) 
开发者ID:BCV-Uniandes,项目名称:SMIT,代码行数:24,代码来源:util.py

示例10: loadDNN

# 需要导入模块: from skimage import color [as 别名]
# 或者: from skimage.color import rgb2lab [as 别名]
def loadDNN(useGpu = False):
    global net,W_in,H_in,H_out,W_out,lm_lab_l_rs
    if useGpu:    
        gpu_id = 0
        caffe.set_mode_gpu()
        caffe.set_device(gpu_id)
    net = caffe.Net('colorization_deploy_v0.prototxt', 'colorization_release_v0.caffemodel', caffe.TEST)
    print '\n done loading network! \n'

    (H_in,W_in) = net.blobs['data_l'].data.shape[2:] # get input shape
    (H_out,W_out) = net.blobs['class8_ab'].data.shape[2:] # get output shape
    net.blobs['Trecip'].data[...] = 6/np.log(10) # 1/T, set annealing temperature
    
    l_mean = sio.loadmat('ilsvrc_2012_mean.mat')
    lm = np.array(l_mean['mean_data'])
    lm = lm/np.max(lm)
    lm_lab = color.rgb2lab(lm)
    lm_lab_l = lm_lab[:,:,0]
    lm_lab_l = lm_lab_l - np.mean(np.mean(lm_lab_l)) + 50
    lm_lab_l =  Image.fromarray(lm_lab_l)    
    lm_lab_l_rs = lm_lab_l.resize((W_in,H_in), Image.ANTIALIAS) 
开发者ID:dannyvai,项目名称:reddit_crawlers,代码行数:23,代码来源:colorize.py

示例11: process_image

# 需要导入模块: from skimage import color [as 别名]
# 或者: from skimage.color import rgb2lab [as 别名]
def process_image(image_data, batch_size, imsize):
    input = torch.zeros(batch_size, 1, imsize, imsize)
    labels = torch.zeros(batch_size, 2, imsize, imsize)
    images_np = image_data.numpy().transpose((0, 2, 3, 1))

    for k in range(batch_size):
        img_lab = rgb2lab(images_np[k], illuminant='D50')
        img_l = img_lab[:, :, 0] / 100
        input[k] = torch.from_numpy(np.expand_dims(img_l, 0))

        img_a_scale = (img_lab[:, :, 1:2] + 88) / 185
        img_b_scale = (img_lab[:, :, 2:3] + 127) / 212

        img_ab_scale = np.concatenate((img_a_scale, img_b_scale), axis=2)
        labels[k] = torch.from_numpy(img_ab_scale.transpose((2, 0, 1)))
    return input, labels 
开发者ID:awesome-davian,项目名称:Text2Colors,代码行数:18,代码来源:util.py

示例12: write_image

# 需要导入模块: from skimage import color [as 别名]
# 或者: from skimage.color import rgb2lab [as 别名]
def write_image(self, img_file, image, img_embedding):
        img = transform.resize(image, img_shape, mode="constant")
        lab = color.rgb2lab(img).astype(np.float32)
        l_channel = 2 * lab[:, :, 0] / 100 - 1
        ab_channels = lab[:, :, 1:] / 127
        example = tf.train.Example(
            features=tf.train.Features(
                feature={
                    "image_name": self._bytes_feature(img_file),
                    "image_l": self._float32_list(l_channel.flatten()),
                    "image_ab": self._float32_list(ab_channels.flatten()),
                    "image_embedding": self._float32_list(img_embedding.flatten()),
                }
            )
        )
        self.write(example.SerializeToString()) 
开发者ID:baldassarreFe,项目名称:deep-koalarization,代码行数:18,代码来源:lab_image_record.py

示例13: format_image

# 需要导入模块: from skimage import color [as 别名]
# 或者: from skimage.color import rgb2lab [as 别名]
def format_image(img_path, size):
    """
    Load img with opencv and reshape
    """

    img_color = cv2.imread(img_path)
    img_color = img_color[:, :, ::-1]
    img_black = cv2.imread(img_path, 0)

    img_color = cv2.resize(img_color, (size, size), interpolation=cv2.INTER_AREA)
    img_black = cv2.resize(img_black, (size, size), interpolation=cv2.INTER_AREA)

    img_lab = color.rgb2lab(img_color)

    img_lab = img_lab.reshape((1, size, size, 3)).transpose(0, 3, 1, 2)
    img_color = img_color.reshape((1, size, size, 3)).transpose(0, 3, 1, 2)
    img_black = img_black.reshape((1, size, size, 1)).transpose(0, 3, 1, 2)

    return img_color, img_lab, img_black 
开发者ID:tdeboissiere,项目名称:DeepLearningImplementations,代码行数:21,代码来源:make_dataset.py

示例14: intensity_entropy

# 需要导入模块: from skimage import color [as 别名]
# 或者: from skimage.color import rgb2lab [as 别名]
def intensity_entropy(inp):
    img = color.rgb2lab(inp)
    l_bins = 20
    L = []
    img = img.reshape(-1, 3)
    img = [tuple(l) for l in img]
    for pixel in img:
        L.append(pixel[0])

    p, x = np.histogram(L, bins=l_bins, range=(0, 100), normed=True)
    p.ravel()
    p = p * 100.
    p = p + 0.000000000001
    p_log = [math.log(y) for y in p]
    p_result = p * p_log
    result = np.sum(p_result)

    return result


# The uncertainty of colour in a leaf, given the leaf. Based on the shannon entropy 
开发者ID:aalto-ui,项目名称:aim,代码行数:23,代码来源:pf6_quadtree_decomposition.py

示例15: execute

# 需要导入模块: from skimage import color [as 别名]
# 或者: from skimage.color import rgb2lab [as 别名]
def execute(b64):
    b64 = base64.b64decode(b64)
    b64 = BytesIO(b64)
    img = Image.open(b64)
    img= np.array(img)
    img = util.img_as_ubyte(img)

    # Convert the LAB space
    lab = color.rgb2lab(img)

    L = lab[:, :, 0]
    A = lab[:, :, 1]
    B = lab[:, :, 2]

    # Get average and standard deviation for each value separately
    meanL = np.mean(L)
    stdL = np.std(L)
    meanA = np.mean(A)
    stdA = np.std(A)
    meanB = np.mean(B)
    stdB = np.std(B)

    result = [meanL, stdL, meanA, stdA, meanB, stdB]

    return result 
开发者ID:aalto-ui,项目名称:aim,代码行数:27,代码来源:cp5_LAB_avg.py


注:本文中的skimage.color.rgb2lab方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。