本文整理汇总了Python中skimage.color.rgb2gray方法的典型用法代码示例。如果您正苦于以下问题:Python color.rgb2gray方法的具体用法?Python color.rgb2gray怎么用?Python color.rgb2gray使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类skimage.color
的用法示例。
在下文中一共展示了color.rgb2gray方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_luminance
# 需要导入模块: from skimage import color [as 别名]
# 或者: from skimage.color import rgb2gray [as 别名]
def test_luminance():
source = sn.load('tests/sobel_input.png')[:,:,:3]
L = rgb2gray(source)
skresult = np.dstack([L, L, L])
small_skresult = sn.resize(skresult, width=256)
L = sn.rgb_to_luminance(source)
snresult = np.dstack([L, L, L])
small_snresult = sn.resize(snresult, width=256)
L = skimage_sobel(source)
sksobel = np.dstack([L, L, L])
small_sksobel = sn.resize(sksobel, width=256)
L = sn.rgb_to_luminance(source)
L = sn.compute_sobel(L)
snsobel = np.dstack([L, L, L])
small_snsobel = sn.resize(snsobel, width=256)
sn.show(np.hstack([
small_skresult,
small_snresult,
small_sksobel,
small_snsobel]))
示例2: convertToGrayScale
# 需要导入模块: from skimage import color [as 别名]
# 或者: from skimage.color import rgb2gray [as 别名]
def convertToGrayScale (rootDir, dirNames):
nbConverted = 0
for root, dirs, files in os.walk(rootDir):
files.sort(key=tryint)
for file in files:
parentDir = os.path.basename(root)
fname = os.path.splitext(file)[0] # no path, no extension. only filename
if parentDir in dirNames:
# convert all images in here to grayscale, store to dirName_gray
newDirPath = ''.join([os.path.dirname(root), os.sep, parentDir + "_gray"])
newFilePath = ''.join([newDirPath, os.sep, fname + "_gray.jpg"])
if not os.path.exists(newDirPath):
os.makedirs(newDirPath)
if not os.path.exists(newFilePath):
# read in grayscale, write to new path
# with OpenCV: weird results (gray image larger than color ?!?)
# img = cv2.imread(root+os.sep+file, 0)
# cv2.imwrite(newFilePath, img)
img_gray = rgb2gray(io.imread(root + os.sep + file))
io.imsave(newFilePath, img_gray) # don't write to disk if already exists
nbConverted += 1
# print(nbConverted, " files have been converted to Grayscale")
return 0
示例3: colorize
# 需要导入模块: from skimage import color [as 别名]
# 或者: from skimage.color import rgb2gray [as 别名]
def colorize():
path = './img/colorize/colorize2.png'
# cv2.imwrite('./img/colorize3.png', cv2.imread(path, 0))
x, y, image_shape = get_train_data(path)
model = build_model()
model.load_weights('./data/simple_colorize.h5')
output = model.predict(x)
output *= 128
tmp = np.zeros((200, 200, 3))
tmp[:, :, 0] = x[0][:, :, 0]
tmp[:, :, 1:] = output[0]
colorizePath = path.replace(".png", "-res.png")
imsave(colorizePath, lab2rgb(tmp))
cv2.imshow("I", cv2.imread(path))
cv2.imshow("II", cv2.imread(colorizePath))
cv2.waitKey(0)
cv2.destroyAllWindows()
# imsave("test_image_gray.png", rgb2gray(lab2rgb(tmp)))
示例4: load_image
# 需要导入模块: from skimage import color [as 别名]
# 或者: from skimage.color import rgb2gray [as 别名]
def load_image(filename, width, invert, gamma):
# Read the image
img = imageio.imread(filename)
if img.shape[-1] == 4:
# Blend the alpha channel
img = color.rgba2rgb(img)
# Grayscale
img = color.rgb2gray(img)
# Resample and adjust the aspect ratio
width_px = (3 * width) * 16
img_width = 1.0 * width_px
img_height = int(img.shape[0] * 3 * (img_width / (4 * img.shape[1])))
img = transform.resize(img, (img_height, img_width), anti_aliasing=True, mode='constant')
# Adjust the exposure
img = exposure.adjust_gamma(img, gamma)
if invert:
img = 1 - img
return img
示例5: generate
# 需要导入模块: from skimage import color [as 别名]
# 或者: from skimage.color import rgb2gray [as 别名]
def generate(self, x_fixed, x_target_fixed, pose_target_fixed, root_path=None, path=None, idx=None, save=True):
G = self.sess.run(self.G, {self.x: x_fixed, self.pose_target: pose_target_fixed})
ssim_G_x_list = []
# x_0_255 = utils_wgan.unprocess_image(x_target_fixed, 127.5, 127.5)
for i in xrange(G.shape[0]):
# G_gray = rgb2gray((G[i,:]/127.5-1).clip(min=-1,max=1))
# x_target_gray = rgb2gray((x_target_fixed[i,:]).clip(min=-1,max=1))
G_gray = rgb2gray((G[i,:]).clip(min=0,max=255).astype(np.uint8))
x_target_gray = rgb2gray(((x_target_fixed[i,:]+1)*127.5).clip(min=0,max=255).astype(np.uint8))
ssim_G_x_list.append(ssim(G_gray, x_target_gray, data_range=x_target_gray.max() - x_target_gray.min(), multichannel=False))
ssim_G_x_mean = np.mean(ssim_G_x_list)
if path is None and save:
path = os.path.join(root_path, '{}_G_ssim{}.png'.format(idx,ssim_G_x_mean))
save_image(G, path)
print("[*] Samples saved: {}".format(path))
return G
示例6: generate
# 需要导入模块: from skimage import color [as 别名]
# 或者: from skimage.color import rgb2gray [as 别名]
def generate(self, x_fixed, x_target_fixed, pose_fixed, part_bbox_fixed, root_path=None, path=None, idx=None, save=True):
G_pose_rcv, G_pose = self.sess.run([self.G_pose_rcv, self.G_pose])
G_pose_inflated = py_poseInflate(G_pose_rcv, is_normalized=True, radius=4, img_H=256, img_W=256)
# G = self.sess.run(self.G, {self.x: x_fixed, self.G_pose_inflated: G_pose_inflated, self.part_bbox: part_bbox_fixed})
G_pose_inflated_img = np.tile(np.amax((G_pose_inflated+1)*127.5, axis=-1, keepdims=True), [1,1,1,3])
# ssim_G_x_list = []
# for i in xrange(G_pose.shape[0]):
# G_gray = rgb2gray((G[i,:]).clip(min=0,max=255).astype(np.uint8))
# x_gray = rgb2gray(((x_fixed[i,:]+1)*127.5).clip(min=0,max=255).astype(np.uint8))
# ssim_G_x_list.append(ssim(G_gray, x_gray, data_range=x_gray.max() - x_gray.min(), multichannel=False))
# ssim_G_x_mean = np.mean(ssim_G_x_list)
if path is None and save:
# path = os.path.join(root_path, '{}_G_ssim{}.png'.format(idx,ssim_G_x_mean))
# save_image(G, path)
# print("[*] Samples saved: {}".format(path))
path = os.path.join(root_path, '{}_G_pose.png'.format(idx))
save_image(G_pose, path)
print("[*] Samples saved: {}".format(path))
path = os.path.join(root_path, '{}_G_pose_inflated.png'.format(idx))
save_image(G_pose_inflated_img, path)
print("[*] Samples saved: {}".format(path))
return G_pose
示例7: get_resized_image
# 需要导入模块: from skimage import color [as 别名]
# 或者: from skimage.color import rgb2gray [as 别名]
def get_resized_image(file, ratio):
img = util.img_as_float(io.imread(file))
if len(img.shape) >= 3 and img.shape[2] == 4:
img = color.rgba2rgb(img)
if len(img.shape) == 2:
img = color.gray2rgb(img)
eimg = filters.sobel(color.rgb2gray(img))
width = img.shape[1]
height = img.shape[0]
mode, rm_paths = get_lines_to_remove((width, height), ratio)
if mode:
logger.debug("Carving %s %s paths ", rm_paths, mode)
outh = transform.seam_carve(img, eimg, mode, rm_paths)
return outh
else:
return img
示例8: levelset_segment_theano
# 需要导入模块: from skimage import color [as 别名]
# 或者: from skimage.color import rgb2gray [as 别名]
def levelset_segment_theano(img, phi=None, dt=1, v=1, sigma=1, alpha=1, n_iter=80):
img = color.rgb2gray(img)
img_smooth = scipy.ndimage.filters.gaussian_filter(img, sigma)
if phi is None:
phi = default_phi(img)
phi = levelset_evolution(img_smooth, phi, dt, v, alpha, n_iter)
return (phi < 0)
示例9: __init__
# 需要导入模块: from skimage import color [as 别名]
# 或者: from skimage.color import rgb2gray [as 别名]
def __init__(self, fname, format=None, resize=None, anti_aliasing=False,
electrodes=None, metadata=None, compress=False,
interp_method='linear', extrapolate=False):
# Open the video reader:
reader = video_reader(fname, format=format)
# Combine video metadata with user-specified metadata:
meta = reader.get_meta_data()
if metadata is not None:
meta.update(metadata)
meta['source'] = fname
# Read the video:
vid = [frame for frame in reader]
# Consider downscaling before doing anything else (with anti-aliasing,
# this can take a while):
if resize is not None:
vid = parfor(img_resize, vid, func_args=[resize],
func_kwargs={'anti_aliasing': anti_aliasing})
if vid[0].ndim == 3 and vid[0].shape[-1] == 3:
vid = parfor(rgb2gray, vid)
vid = np.array(parfor(img_as_float, vid)).transpose((1, 2, 0))
# Infer the time points from the video frame rate:
n_frames = vid.shape[-1]
time = np.arange(n_frames) * meta['fps']
# Call the Stimulus constructor:
super(VideoStimulus, self).__init__(vid.reshape((-1, n_frames)),
time=time, electrodes=electrodes,
metadata=meta, compress=compress,
interp_method=interp_method,
extrapolate=extrapolate)
示例10: __init__
# 需要导入模块: from skimage import color [as 别名]
# 或者: from skimage.color import rgb2gray [as 别名]
def __init__(self, source, format=None, resize=None, as_gray=False,
electrodes=None, metadata=None, compress=False):
if metadata is None:
metadata = {}
if isinstance(source, str):
# Filename provided:
img = imread(source, format=format)
metadata['source'] = source
metadata['source_shape'] = img.shape
elif isinstance(source, ImageStimulus):
img = source.data.reshape(source.img_shape)
metadata.update(source.metadata)
if electrodes is None:
electrodes = source.electrodes
elif isinstance(source, np.ndarray):
img = source
else:
raise TypeError("Source must be a filename or another "
"ImageStimulus, not %s." % type(source))
if img.ndim < 2 or img.ndim > 3:
raise ValueError("Images must have 2 or 3 dimensions, not "
"%d." % img.ndim)
# Convert to grayscale if necessary:
if as_gray:
if img.ndim == 3 and img.shape[2] == 4:
# Blend the background with black:
img = rgba2rgb(img, background=(0, 0, 0))
img = rgb2gray(img)
# Resize if necessary:
if resize is not None:
img = img_resize(img, resize)
# Store the original image shape for resizing and color conversion:
self.img_shape = img.shape
# Convert to float array in [0, 1] and call the Stimulus constructor:
super(ImageStimulus, self).__init__(img_as_float32(img).ravel(),
time=None, electrodes=electrodes,
metadata=metadata,
compress=compress)
示例11: rgb2gray
# 需要导入模块: from skimage import color [as 别名]
# 或者: from skimage.color import rgb2gray [as 别名]
def rgb2gray(self, electrodes=None):
"""Convert the image to grayscale
Parameters
----------
electrodes : int, string or list thereof; optional
Optionally, you can provide your own electrode names. If none are
given, electrode names will be numbered 0..N.
.. note::
The number of electrode names provided must match the number of
pixels in the grayscale image.
Returns
-------
stim : `ImageStimulus`
A copy of the stimulus object with all grayscale values inverted
in the range [0, 1].
Notes
-----
* A four-channel image is interpreted as RGBA (e.g., a PNG), and the
alpha channel will be blended with the color black.
"""
img = self.data.reshape(self.img_shape)
if img.ndim == 3 and img.shape[2] == 4:
# Blend the background with black:
img = rgba2rgb(img, background=(0, 0, 0))
return ImageStimulus(rgb2gray(img), electrodes=electrodes,
metadata=self.metadata)
示例12: _create_data
# 需要导入模块: from skimage import color [as 别名]
# 或者: from skimage.color import rgb2gray [as 别名]
def _create_data(self):
root = utils.get_data_root()
path = os.path.join(root, 'faces', self.name + '.jpg')
try:
image = io.imread(path)
except FileNotFoundError:
raise RuntimeError('Unknown face name: {}'.format(self.name))
image = color.rgb2gray(image)
self.image = transform.resize(image, [512, 512])
grid = np.array([
(x, y) for x in range(self.image.shape[0]) for y in range(self.image.shape[1])
])
rotation_matrix = np.array([
[0, -1],
[1, 0]
])
p = self.image.reshape(-1) / sum(self.image.reshape(-1))
ix = np.random.choice(range(len(grid)), size=self.num_points, replace=True, p=p)
points = grid[ix].astype(np.float32)
points += np.random.rand(self.num_points, 2) # dequantize
points /= (self.image.shape[0]) # scale to [0, 1]
# assert 0 <= min(points) <= max(points) <= 1
self.data = torch.tensor(points @ rotation_matrix).float()
self.data[:, 1] += 1
示例13: pre_processing
# 需要导入模块: from skimage import color [as 别名]
# 或者: from skimage.color import rgb2gray [as 别名]
def pre_processing(next_observe, observe):
processed_observe = np.maximum(next_observe, observe)
processed_observe = np.uint8(
resize(rgb2gray(processed_observe), (84, 84), mode='constant') * 255)
return processed_observe
示例14: pre_processing
# 需要导入模块: from skimage import color [as 别名]
# 或者: from skimage.color import rgb2gray [as 别名]
def pre_processing(observe):
processed_observe = np.uint8(
resize(rgb2gray(observe), (84, 84), mode='constant') * 255)
return processed_observe
示例15: greyscale
# 需要导入模块: from skimage import color [as 别名]
# 或者: from skimage.color import rgb2gray [as 别名]
def greyscale(img):
try:
from skimage import img_as_ubyte
from skimage.color import rgb2gray
except ImportError:
logger.error(
' scikit-image is not installed. '
'In order to install all image feature dependencies run '
'pip install ludwig[image]'
)
sys.exit(-1)
return np.expand_dims(img_as_ubyte(rgb2gray(img)), axis=2)