本文整理汇总了Python中skimage.color.hsv2rgb方法的典型用法代码示例。如果您正苦于以下问题:Python color.hsv2rgb方法的具体用法?Python color.hsv2rgb怎么用?Python color.hsv2rgb使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类skimage.color
的用法示例。
在下文中一共展示了color.hsv2rgb方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _apply_
# 需要导入模块: from skimage import color [as 别名]
# 或者: from skimage.color import hsv2rgb [as 别名]
def _apply_(self, *image):
res = ()
n_img = 0
for img in image:
if n_img == 0:
#pdb.set_trace()
### transform image into HSV
img = img_as_ubyte(color.rgb2hsv(img))
### perturbe each channel H, E, Dab
for i in range(3):
k_i = self.params['k'][i]
b_i = self.params['b'][i]
img[:,:,i] = GreyValuePerturbation(img[:, :, i], k_i, b_i, MIN=0., MAX=255)
#plt.imshow(img[:,:,i], "gray")
#plt.show()
sub_res = img_as_ubyte(color.hsv2rgb(img))
else:
sub_res = img
res += (sub_res,)
n_img += 1
return res
示例2: get_masked_image
# 需要导入模块: from skimage import color [as 别名]
# 或者: from skimage.color import hsv2rgb [as 别名]
def get_masked_image(img, mask, multiplier=0.6):
"""
:param img: The image to be masked.
:param mask: Binary mask to be applied. The object should be represented by 1 and the background by 0
:param multiplier: Floating point multiplier that decides the colour of the mask.
:return: Masked image
"""
img_mask = np.zeros_like(img)
indices = np.where(mask == 1)
img_mask[indices[0], indices[1], 1] = 1
img_mask_hsv = color.rgb2hsv(img_mask)
img_hsv = color.rgb2hsv(img)
img_hsv[indices[0], indices[1], 0] = img_mask_hsv[indices[0], indices[1], 0]
img_hsv[indices[0], indices[1], 1] = img_mask_hsv[indices[0], indices[1], 1] * multiplier
return color.hsv2rgb(img_hsv)
示例3: create_image
# 需要导入模块: from skimage import color [as 别名]
# 或者: from skimage.color import hsv2rgb [as 别名]
def create_image(model, x, y, r, z):
'''
create an image for the given latent vector z
'''
# create input vector
Z = np.repeat(z, x.shape[0]).reshape((-1,x.shape[0]))
X = np.concatenate([x, y, r, Z.T], axis=1)
pred = model.predict(X)
img = []
for k in range(pred.shape[1]):
yp = pred[:, k]
# if k == pred.shape[1]-1:
# yp = np.sin(yp)
yp = (yp - yp.min()) / (yp.max()-yp.min())
img.append(yp.reshape(y_dim, x_dim))
img = np.dstack(img)
if img.shape[-1] == 3:
from skimage.color import hsv2rgb
img = hsv2rgb(img)
return (img*255).astype(np.uint8)
示例4: masked
# 需要导入模块: from skimage import color [as 别名]
# 或者: from skimage.color import hsv2rgb [as 别名]
def masked(img, gt, mask, alpha=1):
"""Returns image with GT lung field outlined with red, predicted lung field
filled with blue."""
rows, cols = img.shape[:2]
color_mask = np.zeros((rows, cols, 3))
boundary = morphology.dilation(gt, morphology.disk(3)) ^ gt
color_mask[mask == 1] = [0, 0, 1]
color_mask[boundary == 1] = [1, 0, 0]
img_hsv = color.rgb2hsv(img)
color_mask_hsv = color.rgb2hsv(color_mask)
img_hsv[..., 0] = color_mask_hsv[..., 0]
img_hsv[..., 1] = color_mask_hsv[..., 1] * alpha
img_masked = color.hsv2rgb(img_hsv)
return img_masked
示例5: RDMcolormap
# 需要导入模块: from skimage import color [as 别名]
# 或者: from skimage.color import hsv2rgb [as 别名]
def RDMcolormap(nCols=256):
# blue-cyan-gray-red-yellow with increasing V (BCGRYincV)
anchorCols = np.array([
[0, 0, 1],
[0, 1, 1],
[.5, .5, .5],
[1, 0, 0],
[1, 1, 0],
])
# skimage rgb2hsv is intended for 3d images (RGB)
# here we add a new axis to our 2d anchorCols to satisfy skimage, and then squeeze
anchorCols_hsv = rgb2hsv(anchorCols[np.newaxis, :]).squeeze()
incVweight = 1
anchorCols_hsv[:, 2] = (1-incVweight)*anchorCols_hsv[:, 2] + \
incVweight*np.linspace(0.5, 1, anchorCols.shape[0]).T
# anchorCols = brightness(anchorCols)
anchorCols = hsv2rgb(anchorCols_hsv[np.newaxis, :]).squeeze()
cols = colorScale(nCols, anchorCols)
return ListedColormap(cols)
示例6: get_masked_image
# 需要导入模块: from skimage import color [as 别名]
# 或者: from skimage.color import hsv2rgb [as 别名]
def get_masked_image(img, mask, multiplier=0.6):
"""
:param img: The image to be masked.
:param mask: Binary mask to be applied. The object should be represented by 1 and the background by 0
:param multiplier: Floating point multiplier that decides the colour of the mask.
:return: Masked image
"""
img_mask = np.zeros_like(img)
indices = np.where(mask == 1)
img_mask[indices[0], indices[1], 1] = 1
img_mask_hsv = color.rgb2hsv(img_mask)
img_hsv = color.rgb2hsv(img)
img_hsv[indices[0], indices[1], 0] = img_mask_hsv[indices[0], indices[1], 0]
img_hsv[indices[0], indices[1], 1] = img_mask_hsv[indices[0], indices[1], 1] * multiplier
return color.hsv2rgb(img_hsv)
# Visualize spatial offset in HSV color space as rotation to spatial center (H),
# distance to spatial center (V)
示例7: masked
# 需要导入模块: from skimage import color [as 别名]
# 或者: from skimage.color import hsv2rgb [as 别名]
def masked(img, gt, mask, alpha=1):
"""Returns image with GT lung field outlined with red, predicted lung field
filled with blue."""
rows, cols = img.shape
color_mask = np.zeros((rows, cols, 3))
boundary = morphology.dilation(gt, morphology.disk(3)) - gt
color_mask[mask == 1] = [0, 0, 1]
color_mask[boundary == 1] = [1, 0, 0]
img_color = np.dstack((img, img, img))
img_hsv = color.rgb2hsv(img_color)
color_mask_hsv = color.rgb2hsv(color_mask)
img_hsv[..., 0] = color_mask_hsv[..., 0]
img_hsv[..., 1] = color_mask_hsv[..., 1] * alpha
img_masked = color.hsv2rgb(img_hsv)
return img_masked
示例8: __call__
# 需要导入模块: from skimage import color [as 别名]
# 或者: from skimage.color import hsv2rgb [as 别名]
def __call__(self, img):
"""numpy array [b, [-1~1], [-1~1], [-1~1]] to target space / result rgb[0~255]"""
img = img.data.numpy()
if self.color_space == 'rgb':
img = (img + 1) * 0.5
img = img.transpose(0, 2, 3, 1)
if self.color_space == 'lab': # to [0~100, -128~127, -128~127]
img[:,:,:,0] = (img[:,:,:,0] + 1) * 50
img[:,:,:,1] = (img[:,:,:,1] * 127.5) - 0.5
img[:,:,:,2] = (img[:,:,:,2] * 127.5) - 0.5
img_list = []
for i in img:
img_list.append(color.lab2rgb(i))
img = np.array(img_list)
elif self.color_space == 'hsv': # to [0~1, 0~1, 0~1]
img = (img + 1) * 0.5
img_list = []
for i in img:
img_list.append(color.hsv2rgb(i))
img = np.array(img_list)
img = (img * 255).astype(np.uint8)
return img # [0~255] / [b, h, w, 3]
示例9: get_overlayed_image
# 需要导入模块: from skimage import color [as 别名]
# 或者: from skimage.color import hsv2rgb [as 别名]
def get_overlayed_image(x, c, gray_factor_bg = 0.3):
'''
For an image x and a relevance vector c, overlay the image with the
relevance vector to visualise the influence of the image pixels.
'''
imDim = x.shape[0]
if np.ndim(c)==1:
c = c.reshape((imDim,imDim))
if np.ndim(x)==2: # this happens with the MNIST Data
x = 1-np.dstack((x, x, x))*gray_factor_bg # make it a bit grayish
if np.ndim(x)==3: # this is what happens with cifar data
x = color.rgb2gray(x)
x = 1-(1-x)*0.5
x = np.dstack((x,x,x))
alpha = 0.8
# Construct a colour image to superimpose
im = plt.imshow(c, cmap = cm.seismic, vmin=-np.max(np.abs(c)), vmax=np.max(np.abs(c)), interpolation='nearest')
color_mask = im.to_rgba(c)[:,:,[0,1,2]]
# Convert the input image and color mask to Hue Saturation Value (HSV) colorspace
img_hsv = color.rgb2hsv(x)
color_mask_hsv = color.rgb2hsv(color_mask)
# Replace the hue and saturation of the original image
# with that of the color mask
img_hsv[..., 0] = color_mask_hsv[..., 0]
img_hsv[..., 1] = color_mask_hsv[..., 1] * alpha
img_masked = color.hsv2rgb(img_hsv)
return img_masked
示例10: brightness
# 需要导入模块: from skimage import color [as 别名]
# 或者: from skimage.color import hsv2rgb [as 别名]
def brightness(_x, c=0.):
_x = np.array(_x, copy=True) / 255.
_x = skcolor.rgb2hsv(_x)
_x[:, :, 2] = np.clip(_x[:, :, 2] + c, 0, 1)
_x = skcolor.hsv2rgb(_x)
return np.uint8(_x * 255)
示例11: original_colors
# 需要导入模块: from skimage import color [as 别名]
# 或者: from skimage.color import hsv2rgb [as 别名]
def original_colors(original, stylized,original_color):
# Histogram normalization in v channel
ratio=1. - original_color
hsv = color.rgb2hsv(original/255)
hsv_s = color.rgb2hsv(stylized/255)
hsv_s[:,:,2] = (ratio* hsv_s[:,:,2]) + (1-ratio)*hsv [:,:,2]
img = color.hsv2rgb(hsv_s)
return img
示例12: TF_shift_hue
# 需要导入模块: from skimage import color [as 别名]
# 或者: from skimage.color import hsv2rgb [as 别名]
def TF_shift_hue(x, shift=0.0):
assert len(x.shape) == 3
h, w, nc = x.shape
hsv = rgb2hsv(x)
hsv[:,:,0] += shift
return hsv2rgb(hsv)
示例13: color_augment_image
# 需要导入模块: from skimage import color [as 别名]
# 或者: from skimage.color import hsv2rgb [as 别名]
def color_augment_image(data):
image = data.transpose(1, 2, 0)
hsv = color.rgb2hsv(image)
# Contrast 2
s_factor1 = numpy.random.uniform(0.25, 4)
s_factor2 = numpy.random.uniform(0.7, 1.4)
s_factor3 = numpy.random.uniform(-0.1, 0.1)
hsv[:, :, 1] = (hsv[:, :, 1] ** s_factor1) * s_factor2 + s_factor3
v_factor1 = numpy.random.uniform(0.25, 4)
v_factor2 = numpy.random.uniform(0.7, 1.4)
v_factor3 = numpy.random.uniform(-0.1, 0.1)
hsv[:, :, 2] = (hsv[:, :, 2] ** v_factor1) * v_factor2 + v_factor3
# Color
h_factor = numpy.random.uniform(-0.1, 0.1)
hsv[:, :, 0] = hsv[:, :, 0] + h_factor
hsv[hsv < 0] = 0.0
hsv[hsv > 1] = 1.0
rgb = color.hsv2rgb(hsv)
data_out = rgb.transpose(2, 0, 1)
return data_out
示例14: get_masked_image_hsv
# 需要导入模块: from skimage import color [as 别名]
# 或者: from skimage.color import hsv2rgb [as 别名]
def get_masked_image_hsv(img_hsv, mask, multiplier=0.6):
"""
:param img_hsv: The hsv image to be masked.
:param mask: Binary mask to be applied. The object should be represented by 1 and the background by 0
:param multiplier: Floating point multiplier that decides the colour of the mask.
:return: Masked image
"""
img_mask_hsv = np.zeros_like(img_hsv)
result_image = np.copy(img_hsv)
indices = np.where(mask == 1)
img_mask_hsv[indices[0], indices[1], :] = [0.33333333333333331, 1.0, 0.0039215686274509803]
result_image[indices[0], indices[1], 0] = img_mask_hsv[indices[0], indices[1], 0]
result_image[indices[0], indices[1], 1] = img_mask_hsv[indices[0], indices[1], 1] * multiplier
return color.hsv2rgb(result_image)