本文整理汇总了Python中six.indexbytes方法的典型用法代码示例。如果您正苦于以下问题:Python six.indexbytes方法的具体用法?Python six.indexbytes怎么用?Python six.indexbytes使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类six
的用法示例。
在下文中一共展示了six.indexbytes方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _VarintDecoder
# 需要导入模块: import six [as 别名]
# 或者: from six import indexbytes [as 别名]
def _VarintDecoder(mask, result_type):
"""Return an encoder for a basic varint value (does not include tag).
Decoded values will be bitwise-anded with the given mask before being
returned, e.g. to limit them to 32 bits. The returned decoder does not
take the usual "end" parameter -- the caller is expected to do bounds checking
after the fact (often the caller can defer such checking until later). The
decoder returns a (value, new_pos) pair.
"""
def DecodeVarint(buffer, pos):
result = 0
shift = 0
while 1:
b = six.indexbytes(buffer, pos)
result |= ((b & 0x7f) << shift)
pos += 1
if not (b & 0x80):
result &= mask
result = result_type(result)
return (result, pos)
shift += 7
if shift >= 64:
raise _DecodeError('Too many bytes when decoding varint.')
return DecodeVarint
示例2: ReadTag
# 需要导入模块: import six [as 别名]
# 或者: from six import indexbytes [as 别名]
def ReadTag(buffer, pos):
"""Read a tag from the buffer, and return a (tag_bytes, new_pos) tuple.
We return the raw bytes of the tag rather than decoding them. The raw
bytes can then be used to look up the proper decoder. This effectively allows
us to trade some work that would be done in pure-python (decoding a varint)
for work that is done in C (searching for a byte string in a hash table).
In a low-level language it would be much cheaper to decode the varint and
use that, but not in Python.
"""
start = pos
while six.indexbytes(buffer, pos) & 0x80:
pos += 1
pos += 1
return (six.binary_type(buffer[start:pos]), pos)
# --------------------------------------------------------------------
示例3: ReadTag
# 需要导入模块: import six [as 别名]
# 或者: from six import indexbytes [as 别名]
def ReadTag(buffer, pos):
"""Read a tag from the buffer, and return a (tag_bytes, new_pos) tuple.
We return the raw bytes of the tag rather than decoding them. The raw
bytes can then be used to look up the proper decoder. This effectively allows
us to trade some work that would be done in pure-python (decoding a varint)
for work that is done in C (searching for a byte string in a hash table).
In a low-level language it would be much cheaper to decode the varint and
use that, but not in Python.
"""
start = pos
while six.indexbytes(buffer, pos) & 0x80:
pos += 1
pos += 1
return (buffer[start:pos], pos)
# --------------------------------------------------------------------
示例4: parse_response_data
# 需要导入模块: import six [as 别名]
# 或者: from six import indexbytes [as 别名]
def parse_response_data(resp_data):
"""
According to https://fidoalliance.org/specs/fido-u2f-v1.0-nfc-bt-amendment-20150514/fido-u2f-raw-message-formats.html#authentication-response-message-success
the response is made up of
0: user presence byte
1-4: counter
5-: signature
:param resp_data: response data from the FIDO U2F client
:type resp_data: hex string
:return: tuple of user_presence_byte(byte), counter(int),
signature(hexstring)
"""
resp_data_bin = binascii.unhexlify(resp_data)
user_presence = six.int2byte(six.indexbytes(resp_data_bin, 0))
signature = resp_data_bin[5:]
counter = struct.unpack(">L", resp_data_bin[1:5])[0]
return user_presence, counter, signature
示例5: _load_ssh_ecdsa_public_key
# 需要导入模块: import six [as 别名]
# 或者: from six import indexbytes [as 别名]
def _load_ssh_ecdsa_public_key(expected_key_type, decoded_data, backend):
curve_name, rest = _ssh_read_next_string(decoded_data)
data, rest = _ssh_read_next_string(rest)
if expected_key_type != b"ecdsa-sha2-" + curve_name:
raise ValueError(
'Key header and key body contain different key type values.'
)
if rest:
raise ValueError('Key body contains extra bytes.')
curve = {
b"nistp256": ec.SECP256R1,
b"nistp384": ec.SECP384R1,
b"nistp521": ec.SECP521R1,
}[curve_name]()
if six.indexbytes(data, 0) != 4:
raise NotImplementedError(
"Compressed elliptic curve points are not supported"
)
numbers = ec.EllipticCurvePublicNumbers.from_encoded_point(curve, data)
return numbers.public_key(backend)
示例6: _get_unverified_token_data
# 需要导入模块: import six [as 别名]
# 或者: from six import indexbytes [as 别名]
def _get_unverified_token_data(token):
if not isinstance(token, bytes):
raise TypeError("token must be bytes.")
try:
data = base64.urlsafe_b64decode(token)
except (TypeError, binascii.Error):
raise InvalidToken
if not data or six.indexbytes(data, 0) != 0x80:
raise InvalidToken
try:
timestamp, = struct.unpack(">Q", data[1:9])
except struct.error:
raise InvalidToken
return timestamp, data
示例7: _load_ssh_ecdsa_public_key
# 需要导入模块: import six [as 别名]
# 或者: from six import indexbytes [as 别名]
def _load_ssh_ecdsa_public_key(expected_key_type, decoded_data, backend):
curve_name, rest = _ssh_read_next_string(decoded_data)
data, rest = _ssh_read_next_string(rest)
if expected_key_type != b"ecdsa-sha2-" + curve_name:
raise ValueError(
'Key header and key body contain different key type values.'
)
if rest:
raise ValueError('Key body contains extra bytes.')
curve = {
b"nistp256": ec.SECP256R1,
b"nistp384": ec.SECP384R1,
b"nistp521": ec.SECP521R1,
}[curve_name]()
if six.indexbytes(data, 0) != 4:
raise NotImplementedError(
"Compressed elliptic curve points are not supported"
)
return ec.EllipticCurvePublicKey.from_encoded_point(curve, data)
示例8: enable
# 需要导入模块: import six [as 别名]
# 或者: from six import indexbytes [as 别名]
def enable(self, cpuSet, events):
"""
Enables pmu events in a set of target cpus
:param cpuSet: A set of cpu cores to enable pmu
:param events: A list of pmu events to be enabled
"""
if not self.device:
raise Exception('xpedite device not enabled - use "with PMUCtrl() as pmuCtrl:" to init device')
eventSet = self.buildEventSet(self.eventsDb, cpuSet, events)
for cpu in cpuSet:
requestGroup = self.buildRequestGroup(cpu, eventSet)
LOGGER.debug(
'sending request (%d bytes) to xpedite ko [%s]',
len(requestGroup), ':'.join('{:02x}'.format(six.indexbytes(requestGroup, i))
for i in range(0, len(requestGroup)))
)
self.device.write(requestGroup)
self.device.flush()
return eventSet
示例9: read_byte
# 需要导入模块: import six [as 别名]
# 或者: from six import indexbytes [as 别名]
def read_byte(self):
if self.__size < 1:
raise IndexError('Buffer queue is empty')
segments = self.__segments
segment = segments[0]
segment_len = len(segment)
offset = self.__offset
if BufferQueue.is_eof(segment):
octet = _EOF
else:
octet = self.__ord(six.indexbytes(segment, offset))
offset += 1
if offset == segment_len:
offset = 0
segments.popleft()
self.__offset = offset
self.__size -= 1
self.position += 1
return octet
示例10: _int_factory
# 需要导入模块: import six [as 别名]
# 或者: from six import indexbytes [as 别名]
def _int_factory(sign, data):
def parse_int():
value = 0
length = len(data)
while length >= 8:
segment = _rslice(data, length, 8)
value <<= 64
value |= unpack('>Q', segment)[0]
length -= 8
if length >= 4:
segment = _rslice(data, length, 4)
value <<= 32
value |= unpack('>I', segment)[0]
length -= 4
if length >= 2:
segment = _rslice(data, length, 2)
value <<= 16
value |= unpack('>H', segment)[0]
length -= 2
if length == 1:
value <<= 8
value |= six.indexbytes(data, -length)
return sign * value
return parse_int
示例11: parser
# 需要导入模块: import six [as 别名]
# 或者: from six import indexbytes [as 别名]
def parser(cls, buf):
(diag, flags, detect_mult, length, my_discr, your_discr,
desired_min_tx_interval, required_min_rx_interval,
required_min_echo_rx_interval) = \
struct.unpack_from(cls._PACK_STR, buf[:cls._PACK_STR_LEN])
ver = diag >> 5
diag = diag & 0x1f
state = flags >> 6
flags = flags & 0x3f
if flags & BFD_FLAG_AUTH_PRESENT:
auth_type = six.indexbytes(buf, cls._PACK_STR_LEN)
auth_cls = cls._auth_parsers[auth_type].\
parser(buf[cls._PACK_STR_LEN:])[0]
else:
auth_cls = None
msg = cls(ver, diag, state, flags, detect_mult,
my_discr, your_discr, desired_min_tx_interval,
required_min_rx_interval, required_min_echo_rx_interval,
auth_cls)
return msg, None, None
示例12: serialize
# 需要导入模块: import six [as 别名]
# 或者: from six import indexbytes [as 别名]
def serialize(self):
# fixup
byte_length = (self.length + 7) // 8
bin_addr = self._to_bin(self.addr)
if (self.length % 8) == 0:
bin_addr = bin_addr[:byte_length]
else:
# clear trailing bits in the last octet.
# rfc doesn't require this.
mask = 0xff00 >> (self.length % 8)
last_byte = six.int2byte(
six.indexbytes(bin_addr, byte_length - 1) & mask)
bin_addr = bin_addr[:byte_length - 1] + last_byte
self.addr = self._from_bin(bin_addr)
buf = bytearray()
msg_pack_into(self._PACK_STR, buf, 0, self.length)
return buf + bytes(bin_addr)
示例13: is_compressed
# 需要导入模块: import six [as 别名]
# 或者: from six import indexbytes [as 别名]
def is_compressed(serialized_data):
"""Check whatever the data was serialized with compression."""
return six.indexbytes(serialized_data, 0) == ord("c")
示例14: xor
# 需要导入模块: import six [as 别名]
# 或者: from six import indexbytes [as 别名]
def xor(key, data):
"""
Perform cyclical exclusive or operations on ``data``.
The ``key`` can be a an integer *(0 <= key < 256)* or a byte sequence. If
the key is smaller than the provided ``data``, the ``key`` will be
repeated.
Args:
key(int or bytes): The key to xor ``data`` with.
data(bytes): The data to perform the xor operation on.
Returns:
bytes: The result of the exclusive or operation.
Examples:
>>> from pwny import *
>>> xor(5, b'ABCD')
b'DGFA'
>>> xor(5, b'DGFA')
b'ABCD'
>>> xor(b'pwny', b'ABCDEFGHIJKLMNOPQRSTUVWXYZ')
b'15-=51)19=%5=9!)!%=-%!9!)-'
>>> xor(b'pwny', b'15-=51)19=%5=9!)!%=-%!9!)-')
b'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
"""
if type(key) is int:
key = six.int2byte(key)
key_len = len(key)
return b''.join(
six.int2byte(c ^ six.indexbytes(key, i % key_len))
for i, c in enumerate(six.iterbytes(data))
)
示例15: bit
# 需要导入模块: import six [as 别名]
# 或者: from six import indexbytes [as 别名]
def bit(h, i):
return (six.indexbytes(h, i // 8) >> (i % 8)) & 1