当前位置: 首页>>代码示例>>Python>>正文


Python metrics.recall_score方法代码示例

本文整理汇总了Python中seqeval.metrics.recall_score方法的典型用法代码示例。如果您正苦于以下问题:Python metrics.recall_score方法的具体用法?Python metrics.recall_score怎么用?Python metrics.recall_score使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在seqeval.metrics的用法示例。


在下文中一共展示了metrics.recall_score方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: evaluate_results

# 需要导入模块: from seqeval import metrics [as 别名]
# 或者: from seqeval.metrics import recall_score [as 别名]
def evaluate_results(net, test_loader, pad_id, cuda):
    logger.info("Evaluating test samples...")
    acc = 0; out_labels = []; true_labels = []
    net.eval()
    with torch.no_grad():
        for i, data in tqdm(enumerate(test_loader), total=len(test_loader)):
            x, e1_e2_start, labels, _,_,_ = data
            attention_mask = (x != pad_id).float()
            token_type_ids = torch.zeros((x.shape[0], x.shape[1])).long()

            if cuda:
                x = x.cuda()
                labels = labels.cuda()
                attention_mask = attention_mask.cuda()
                token_type_ids = token_type_ids.cuda()
                
            classification_logits = net(x, token_type_ids=token_type_ids, attention_mask=attention_mask, Q=None,\
                          e1_e2_start=e1_e2_start)
            
            accuracy, (o, l) = evaluate_(classification_logits, labels, ignore_idx=-1)
            out_labels.append([str(i) for i in o]); true_labels.append([str(i) for i in l])
            acc += accuracy
    
    accuracy = acc/(i + 1)
    results = {
        "accuracy": accuracy,
        "precision": precision_score(true_labels, out_labels),
        "recall": recall_score(true_labels, out_labels),
        "f1": f1_score(true_labels, out_labels)
    }
    logger.info("***** Eval results *****")
    for key in sorted(results.keys()):
        logger.info("  %s = %s", key, str(results[key]))
    
    return results 
开发者ID:plkmo,项目名称:BERT-Relation-Extraction,代码行数:37,代码来源:train_funcs.py

示例2: _eval_end

# 需要导入模块: from seqeval import metrics [as 别名]
# 或者: from seqeval.metrics import recall_score [as 别名]
def _eval_end(self, outputs):
        "Evaluation called for both Val and Test"
        val_loss_mean = torch.stack([x["val_loss"] for x in outputs]).mean()
        preds = np.concatenate([x["pred"] for x in outputs], axis=0)
        preds = np.argmax(preds, axis=2)
        out_label_ids = np.concatenate([x["target"] for x in outputs], axis=0)

        label_map = {i: label for i, label in enumerate(self.labels)}
        out_label_list = [[] for _ in range(out_label_ids.shape[0])]
        preds_list = [[] for _ in range(out_label_ids.shape[0])]

        for i in range(out_label_ids.shape[0]):
            for j in range(out_label_ids.shape[1]):
                if out_label_ids[i, j] != self.pad_token_label_id:
                    out_label_list[i].append(label_map[out_label_ids[i][j]])
                    preds_list[i].append(label_map[preds[i][j]])

        results = {
            "val_loss": val_loss_mean,
            "precision": precision_score(out_label_list, preds_list),
            "recall": recall_score(out_label_list, preds_list),
            "f1": f1_score(out_label_list, preds_list),
        }

        if self.is_logger():
            logger.info("***** Eval results *****")
            for key in sorted(results.keys()):
                logger.info("  %s = %s", key, str(results[key]))

        tensorboard_logs = results
        ret = {k: v for k, v in results.items()}
        ret["log"] = tensorboard_logs
        return ret, preds_list, out_label_list 
开发者ID:bhoov,项目名称:exbert,代码行数:35,代码来源:run_pl_ner.py

示例3: get_slot_metrics

# 需要导入模块: from seqeval import metrics [as 别名]
# 或者: from seqeval.metrics import recall_score [as 别名]
def get_slot_metrics(preds, labels):
    assert len(preds) == len(labels)
    return {
        "slot_precision": precision_score(labels, preds),
        "slot_recall": recall_score(labels, preds),
        "slot_f1": f1_score(labels, preds)
    } 
开发者ID:monologg,项目名称:JointBERT,代码行数:9,代码来源:utils.py

示例4: f1_pre_rec

# 需要导入模块: from seqeval import metrics [as 别名]
# 或者: from seqeval.metrics import recall_score [as 别名]
def f1_pre_rec(labels, preds):
    return {
        "precision": precision_score(labels, preds, suffix=True),
        "recall": recall_score(labels, preds, suffix=True),
        "f1": f1_score(labels, preds, suffix=True)
    } 
开发者ID:monologg,项目名称:KoBERT-NER,代码行数:8,代码来源:utils.py

示例5: evaluate

# 需要导入模块: from seqeval import metrics [as 别名]
# 或者: from seqeval.metrics import recall_score [as 别名]
def evaluate(self, data: List[List[str]], labels: List[List[str]]) -> float:
        """Evaluate the performance of ner model with given data and labels, and return the f1
        score.

        Args:
            data: List of List of str. List of tokenized (in char level) texts ,
                like ``[['我', '在', '上', '海', '上', '学'], ...]``.
            labels: List of List of str. The corresponding labels , usually in BIO or BIOES
                format, like ``[['O', 'O', 'B-LOC', 'I-LOC', 'O', 'O'], ...]``.

        Returns:
            Float. The F1 score.

        """
        features, y = self.preprocessor.prepare_input(data, labels)
        pred_probs = self.model.predict(features)
        if self.preprocessor.use_bert:
            pred_probs = pred_probs[:, 1:-1, :]     # remove <CLS> and <SEQ>

        lengths = [min(len(label), pred_prob.shape[0])
                   for label, pred_prob in zip(labels, pred_probs)]
        y_pred = self.preprocessor.label_decode(pred_probs, lengths)

        r = metrics.recall_score(labels, y_pred)
        p = metrics.precision_score(labels, y_pred)
        f1 = metrics.f1_score(labels, y_pred)

        logging.info('Recall: {}, Precision: {}, F1: {}'.format(r, p, f1))
        logging.info(metrics.classification_report(labels, y_pred))

        return f1 
开发者ID:boat-group,项目名称:fancy-nlp,代码行数:33,代码来源:ner_trainer.py

示例6: on_epoch_end

# 需要导入模块: from seqeval import metrics [as 别名]
# 或者: from seqeval.metrics import recall_score [as 别名]
def on_epoch_end(self, epoch, logs=None):
        pred_probs = self.model.predict(self.valid_features)
        if self.preprocessor.use_bert:
            pred_probs = pred_probs[:, 1:-1, :]     # remove <CLS> and <SEQ>
        y_pred = self.preprocessor.label_decode(pred_probs, self.get_lengths(pred_probs))

        r = metrics.recall_score(self.valid_labels, y_pred)
        p = metrics.precision_score(self.valid_labels, y_pred)
        f1 = metrics.f1_score(self.valid_labels, y_pred)

        logs['val_r'] = r
        logs['val_p'] = p
        logs['val_f1'] = f1
        print('Epoch {}: val_r: {}, val_p: {}, val_f1: {}'.format(epoch+1, r, p, f1))
        print(metrics.classification_report(self.valid_labels, y_pred)) 
开发者ID:boat-group,项目名称:fancy-nlp,代码行数:17,代码来源:metrics.py

示例7: reduce_aggregated_logs

# 需要导入模块: from seqeval import metrics [as 别名]
# 或者: from seqeval.metrics import recall_score [as 别名]
def reduce_aggregated_logs(self, aggregated_logs):
    """Reduces aggregated logs over validation steps."""
    label_class = aggregated_logs['label_class']
    predict_class = aggregated_logs['predict_class']
    return {
        'f1':
            seqeval_metrics.f1_score(label_class, predict_class),
        'precision':
            seqeval_metrics.precision_score(label_class, predict_class),
        'recall':
            seqeval_metrics.recall_score(label_class, predict_class),
        'accuracy':
            seqeval_metrics.accuracy_score(label_class, predict_class),
    } 
开发者ID:tensorflow,项目名称:models,代码行数:16,代码来源:tagging.py

示例8: evaluate_results

# 需要导入模块: from seqeval import metrics [as 别名]
# 或者: from seqeval.metrics import recall_score [as 别名]
def evaluate_results(net, data_loader, cuda, g_mask1, g_mask2, args, create_masks, create_trg_mask, ignore_idx2=7):
    acc = 0; acc2 = 0
    print("Evaluating...")
    out_labels = []; true_labels = []
    with torch.no_grad():
        net.eval()
        for i, data in tqdm(enumerate(data_loader), total=len(data_loader)):
            if args.model_no == 0:
                src_input, trg_input, trg2_input = data[0], data[1][:, :-1], data[2][:, :-1]
                labels = data[1][:,1:].contiguous().view(-1)
                labels2 = data[2][:,1:].contiguous().view(-1)
                src_mask, trg_mask = create_masks(src_input, trg_input)
                trg2_mask = create_trg_mask(trg2_input, ignore_idx=ignore_idx2)
                if cuda:
                    src_input = src_input.cuda().long(); trg_input = trg_input.cuda().long(); labels = labels.cuda().long()
                    src_mask = src_mask.cuda(); trg_mask = trg_mask.cuda(); trg2_mask = trg2_mask.cuda()
                    trg2_input = trg2_input.cuda().long(); labels2 = labels2.cuda().long()
                outputs, outputs2 = net(src_input, trg_input, trg2_input, src_mask, trg_mask, trg2_mask)
                
            elif args.model_no == 1:
                src_input, trg_input, trg2_input = data[0], data[1][:, :-1], data[2][:, :-1]
                labels = data[1][:,1:].contiguous().view(-1)
                labels2 = data[2][:,1:].contiguous().view(-1)
                if cuda:
                    src_input = src_input.cuda().long(); trg_input = trg_input.cuda().long(); labels = labels.cuda().long()
                    trg2_input = trg2_input.cuda().long(); labels2 = labels2.cuda().long()
                outputs, outputs2 = net(src_input, trg_input, trg2_input)
                
            outputs = outputs.view(-1, outputs.size(-1))
            outputs2 = outputs2.view(-1, outputs2.size(-1))
            acc += evaluate(outputs, labels, ignore_idx=1)[0]
            cal_acc, (o, l) = evaluate(outputs2, labels2, ignore_idx=ignore_idx2)
            out_labels.append([str(i) for i in o]); true_labels.append([str(i) for i in l])
            acc2 += cal_acc
    accuracy = (acc/(i + 1) + acc2/(i + 1))/2
    results = {
        "accuracy": accuracy,
        "precision": precision_score(true_labels, out_labels),
        "recall": recall_score(true_labels, out_labels),
        "f1": f1_score(true_labels, out_labels)
    }

    logger.info("***** Eval results *****")
    for key in sorted(results.keys()):
        logger.info("  %s = %s", key, str(results[key]))
    
    return accuracy 
开发者ID:plkmo,项目名称:NLP_Toolkit,代码行数:49,代码来源:train_funcs.py

示例9: evaluate_results

# 需要导入模块: from seqeval import metrics [as 别名]
# 或者: from seqeval.metrics import recall_score [as 别名]
def evaluate_results(net, data_loader, cuda, g_mask1, g_mask2, args, ignore_idx, idx2pos):
    acc = 0
    print("Evaluating...")
    out_labels = []; true_labels = []
    with torch.no_grad():
        net.eval()
        for i, data in tqdm(enumerate(data_loader), total=len(data_loader)):
            if args.model_no == 0:
                if len(data) == 4:
                    src_input = data[0]
                    src_mask = data[1]
                    token_type = data[2]
                    labels = data[3].contiguous().view(-1)
                else:
                    src_input = data[0]
                    labels = data[1].contiguous().view(-1)
                    src_mask = (src_input != 0).long()
                    token_type = torch.zeros((src_input.shape[0], src_input.shape[1]), dtype=torch.long)
                if cuda:
                    src_input = src_input.cuda().long(); labels = labels.cuda().long()
                    src_mask = src_mask.cuda(); token_type=token_type.cuda()
                outputs = net(src_input, attention_mask=src_mask, token_type_ids=token_type)
                outputs = outputs[0]
                
            elif args.model_no == 1:
                src_input, trg_input = data[0], data[1][:, :-1]
                labels = data[1][:,1:].contiguous().view(-1)
                if cuda:
                    src_input = src_input.cuda().long(); trg_input = trg_input.cuda().long(); labels = labels.cuda().long()
                outputs = net(src_input, trg_input)
            
            #print(outputs.shape); print(labels.shape)
            outputs = outputs.reshape(-1, outputs.size(-1))
            cal_acc, (o, l) = evaluate(outputs, labels, ignore_idx)
            out_labels.append([idx2pos[i] for i in o]); true_labels.append([idx2pos[i] for i in l])
            acc += cal_acc
            
    eval_acc = acc/(i + 1)
    results = {
        "accuracy": eval_acc,
        "precision": precision_score(true_labels, out_labels),
        "recall": recall_score(true_labels, out_labels),
        "f1": f1_score(true_labels, out_labels)
    }

    logger.info("***** Eval results *****")
    for key in sorted(results.keys()):
        logger.info("  %s = %s", key, str(results[key]))
        
    return results 
开发者ID:plkmo,项目名称:NLP_Toolkit,代码行数:52,代码来源:train_funcs.py

示例10: evaluate_results

# 需要导入模块: from seqeval import metrics [as 别名]
# 或者: from seqeval.metrics import recall_score [as 别名]
def evaluate_results(net, data_loader, cuda, g_mask1, g_mask2, args, ignore_idx, idx2ner):
    acc = 0
    print("Evaluating...")
    out_labels = []; true_labels = []
    with torch.no_grad():
        net.eval()
        for i, data in tqdm(enumerate(data_loader), total=len(data_loader)):
            if args.model_no == 0:
                if len(data) == 4:
                    src_input = data[0]
                    src_mask = data[1]
                    token_type = data[2]
                    labels = data[3].contiguous().view(-1)
                else:
                    src_input = data[0]
                    labels = data[1].contiguous().view(-1)
                    src_mask = (src_input != 0).long()
                    token_type = torch.zeros((src_input.shape[0], src_input.shape[1]), dtype=torch.long)
                if cuda:
                    src_input = src_input.cuda().long(); labels = labels.cuda().long()
                    src_mask = src_mask.cuda(); token_type=token_type.cuda()
                outputs = net(src_input, attention_mask=src_mask, token_type_ids=token_type)
                outputs = outputs[0]
                
            elif args.model_no == 1:
                src_input, trg_input = data[0], data[1][:, :-1]
                labels = data[1][:,1:].contiguous().view(-1)
                if cuda:
                    src_input = src_input.cuda().long(); trg_input = trg_input.cuda().long(); labels = labels.cuda().long()
                outputs = net(src_input, trg_input)
            
            #print(outputs.shape); print(labels.shape)
            outputs = outputs.reshape(-1, outputs.size(-1))
            cal_acc, (o, l) = evaluate(outputs, labels, ignore_idx)
            out_labels.append([idx2ner[i] for i in o]); true_labels.append([idx2ner[i] for i in l])
            acc += cal_acc
            
    eval_acc = acc/(i + 1)
    results = {
        "accuracy": eval_acc,
        "precision": precision_score(true_labels, out_labels),
        "recall": recall_score(true_labels, out_labels),
        "f1": f1_score(true_labels, out_labels)
    }

    logger.info("***** Eval results *****")
    for key in sorted(results.keys()):
        logger.info("  %s = %s", key, str(results[key]))
        
    return results 
开发者ID:plkmo,项目名称:NLP_Toolkit,代码行数:52,代码来源:train_funcs.py


注:本文中的seqeval.metrics.recall_score方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。