当前位置: 首页>>代码示例>>Python>>正文


Python seq2seq_attention_decode.BSDecoder方法代码示例

本文整理汇总了Python中seq2seq_attention_decode.BSDecoder方法的典型用法代码示例。如果您正苦于以下问题:Python seq2seq_attention_decode.BSDecoder方法的具体用法?Python seq2seq_attention_decode.BSDecoder怎么用?Python seq2seq_attention_decode.BSDecoder使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在seq2seq_attention_decode的用法示例。


在下文中一共展示了seq2seq_attention_decode.BSDecoder方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: main

# 需要导入模块: import seq2seq_attention_decode [as 别名]
# 或者: from seq2seq_attention_decode import BSDecoder [as 别名]
def main(unused_argv):
  vocab = data.Vocab(FLAGS.vocab_path, 1000000)
  # Check for presence of required special tokens.
  assert vocab.CheckVocab(data.PAD_TOKEN) > 0
  assert vocab.CheckVocab(data.UNKNOWN_TOKEN) >= 0
  assert vocab.CheckVocab(data.SENTENCE_START) > 0
  assert vocab.CheckVocab(data.SENTENCE_END) > 0

  batch_size = 4
  if FLAGS.mode == 'decode':
    batch_size = FLAGS.beam_size

  hps = seq2seq_attention_model.HParams(
      mode=FLAGS.mode,  # train, eval, decode
      min_lr=0.01,  # min learning rate.
      lr=0.15,  # learning rate
      batch_size=batch_size,
      enc_layers=4,
      enc_timesteps=120,
      dec_timesteps=30,
      min_input_len=2,  # discard articles/summaries < than this
      num_hidden=256,  # for rnn cell
      emb_dim=128,  # If 0, don't use embedding
      max_grad_norm=2,
      num_softmax_samples=4096)  # If 0, no sampled softmax.

  batcher = batch_reader.Batcher(
      FLAGS.data_path, vocab, hps, FLAGS.article_key,
      FLAGS.abstract_key, FLAGS.max_article_sentences,
      FLAGS.max_abstract_sentences, bucketing=FLAGS.use_bucketing,
      truncate_input=FLAGS.truncate_input)
  tf.set_random_seed(FLAGS.random_seed)

  if hps.mode == 'train':
    model = seq2seq_attention_model.Seq2SeqAttentionModel(
        hps, vocab, num_gpus=FLAGS.num_gpus)
    _Train(model, batcher)
  elif hps.mode == 'eval':
    model = seq2seq_attention_model.Seq2SeqAttentionModel(
        hps, vocab, num_gpus=FLAGS.num_gpus)
    _Eval(model, batcher, vocab=vocab)
  elif hps.mode == 'decode':
    decode_mdl_hps = hps
    # Only need to restore the 1st step and reuse it since
    # we keep and feed in state for each step's output.
    decode_mdl_hps = hps._replace(dec_timesteps=1)
    model = seq2seq_attention_model.Seq2SeqAttentionModel(
        decode_mdl_hps, vocab, num_gpus=FLAGS.num_gpus)
    decoder = seq2seq_attention_decode.BSDecoder(model, batcher, hps, vocab)
    decoder.DecodeLoop() 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:52,代码来源:seq2seq_attention.py

示例2: main

# 需要导入模块: import seq2seq_attention_decode [as 别名]
# 或者: from seq2seq_attention_decode import BSDecoder [as 别名]
def main(unused_argv):
  vocab = data.Vocab(FLAGS.vocab_path, 1000000)
  # Check for presence of required special tokens.
  assert vocab.WordToId(data.PAD_TOKEN) > 0
  assert vocab.WordToId(data.UNKNOWN_TOKEN) >= 0
  assert vocab.WordToId(data.SENTENCE_START) > 0
  assert vocab.WordToId(data.SENTENCE_END) > 0

  batch_size = 4
  if FLAGS.mode == 'decode':
    batch_size = FLAGS.beam_size

  hps = seq2seq_attention_model.HParams(
      mode=FLAGS.mode,  # train, eval, decode
      min_lr=0.01,  # min learning rate.
      lr=0.15,  # learning rate
      batch_size=batch_size,
      enc_layers=4,
      enc_timesteps=120,
      dec_timesteps=30,
      min_input_len=2,  # discard articles/summaries < than this
      num_hidden=256,  # for rnn cell
      emb_dim=128,  # If 0, don't use embedding
      max_grad_norm=2,
      num_softmax_samples=4096)  # If 0, no sampled softmax.

  batcher = batch_reader.Batcher(
      FLAGS.data_path, vocab, hps, FLAGS.article_key,
      FLAGS.abstract_key, FLAGS.max_article_sentences,
      FLAGS.max_abstract_sentences, bucketing=FLAGS.use_bucketing,
      truncate_input=FLAGS.truncate_input)
  tf.set_random_seed(FLAGS.random_seed)

  if hps.mode == 'train':
    model = seq2seq_attention_model.Seq2SeqAttentionModel(
        hps, vocab, num_gpus=FLAGS.num_gpus)
    _Train(model, batcher)
  elif hps.mode == 'eval':
    model = seq2seq_attention_model.Seq2SeqAttentionModel(
        hps, vocab, num_gpus=FLAGS.num_gpus)
    _Eval(model, batcher, vocab=vocab)
  elif hps.mode == 'decode':
    decode_mdl_hps = hps
    # Only need to restore the 1st step and reuse it since
    # we keep and feed in state for each step's output.
    decode_mdl_hps = hps._replace(dec_timesteps=1)
    model = seq2seq_attention_model.Seq2SeqAttentionModel(
        decode_mdl_hps, vocab, num_gpus=FLAGS.num_gpus)
    decoder = seq2seq_attention_decode.BSDecoder(model, batcher, hps, vocab)
    decoder.DecodeLoop() 
开发者ID:coderSkyChen,项目名称:Action_Recognition_Zoo,代码行数:52,代码来源:seq2seq_attention.py


注:本文中的seq2seq_attention_decode.BSDecoder方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。