本文整理汇总了Python中seq2seq.models方法的典型用法代码示例。如果您正苦于以下问题:Python seq2seq.models方法的具体用法?Python seq2seq.models怎么用?Python seq2seq.models使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类seq2seq
的用法示例。
在下文中一共展示了seq2seq.models方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _load_model_from_config
# 需要导入模块: import seq2seq [as 别名]
# 或者: from seq2seq import models [as 别名]
def _load_model_from_config(config_path, hparam_overrides, vocab_file, mode):
"""Loads model from a configuration file"""
with gfile.GFile(config_path) as config_file:
config = yaml.load(config_file)
model_cls = locate(config["model"]) or getattr(models, config["model"])
model_params = config["model_params"]
if hparam_overrides:
model_params.update(hparam_overrides)
# Change the max decode length to make the test run faster
model_params["decoder.params"]["max_decode_length"] = 5
model_params["vocab_source"] = vocab_file
model_params["vocab_target"] = vocab_file
return model_cls(params=model_params, mode=mode)
开发者ID:akanimax,项目名称:natural-language-summary-generation-from-structured-data,代码行数:15,代码来源:example_config_test.py
示例2: average_models
# 需要导入模块: import seq2seq [as 别名]
# 或者: from seq2seq import models [as 别名]
def average_models(checkpoint_filenames):
averaged = {}
scale = 1. / len(checkpoint_filenames)
print('Averaging %s models' % len(checkpoint_filenames))
for m in checkpoint_filenames:
checkpoint = torch.load(
m, map_location=lambda storage, loc: storage)
for n, p in checkpoint['state_dict'].items():
if n in averaged:
averaged[n].add_(scale * p)
else:
averaged[n] = scale * p
checkpoint['state_dict'] = averaged
return checkpoint
示例3: remove_wn_checkpoint
# 需要导入模块: import seq2seq [as 别名]
# 或者: from seq2seq import models [as 别名]
def remove_wn_checkpoint(checkpoint):
model = getattr(models, checkpoint['config'].model)(
**checkpoint['config'].model_config)
model.load_state_dict(checkpoint['state_dict'])
def change_field(dict_obj, field, new_val):
for k, v in dict_obj.items():
if k == field:
dict_obj[k] = new_val
elif isinstance(v, dict):
change_field(v, field, new_val)
change_field(checkpoint['config'].model_config, 'layer_norm', False)
for module in model.modules():
if isinstance(module, nn.Linear) or isinstance(module, nn.Conv2d) or isinstance(module, nn.LSTM) or isinstance(module, nn.LSTMCell):
for n, _ in list(module.named_parameters()):
if n.endswith('_g'):
name = n.replace('_g', '')
wn = WeightNorm(None, 0)
weight = wn.compute_weight(module, name)
delattr(module, name)
del module._parameters[name + '_g']
del module._parameters[name + '_v']
module.register_parameter(name, nn.Parameter(weight.data))
print('wn removed from %s - %s' % (module, name))
checkpoint['state_dict'] = model.state_dict()
change_field(checkpoint['config'].model_config, 'weight_norm', False)
return checkpoint
示例4: __init__
# 需要导入模块: import seq2seq [as 别名]
# 或者: from seq2seq import models [as 别名]
def __init__(self, checkpoint,
use_moses=None,
beam_size=5,
length_normalization_factor=0,
max_input_length=None,
max_output_length=50,
get_attention=False,
device="cpu",
device_ids=None):
config = checkpoint['config']
self.model = getattr(models, config.model)(**config.model_config)
self.model.load_state_dict(checkpoint['state_dict'])
self.src_tok, self.target_tok = checkpoint['tokenizers'].values()
if use_moses is None: # if not set, turn on if training was done with moses pretok
use_moses = config.data_config.get('moses_pretok', False)
if use_moses:
src_lang, target_lang = checkpoint['tokenizers'].keys()
self.src_tok.enable_moses(lang=src_lang)
self.target_tok.enable_moses(lang=target_lang)
self.insert_target_start = [BOS]
self.insert_src_start = [BOS]
self.insert_src_end = [EOS]
self.get_attention = get_attention
self.device = device
self.device_ids = device_ids
self.model.to(self.device)
self.model.eval()
self.beam_size = beam_size
self.max_input_length = max_input_length
self.max_output_length = max_output_length
self.get_attention = get_attention
self.length_normalization_factor = length_normalization_factor
self.batch_first = self.model.encoder.batch_first
self.pack_encoder_inputs = getattr(self.model.encoder, 'pack_inputs',
False)
示例5: evaluate
# 需要导入模块: import seq2seq [as 别名]
# 或者: from seq2seq import models [as 别名]
def evaluate(self, model, data):
""" Evaluate a model on given dataset and return performance.
Args:
model (seq2seq.models): model to evaluate
data (seq2seq.dataset.dataset.Dataset): dataset to evaluate against
Returns:
loss (float): loss of the given model on the given dataset
"""
model.eval()
loss = self.loss
loss.reset()
match = 0
total = 0
device = None if torch.cuda.is_available() else -1
batch_iterator = torchtext.data.BucketIterator(
dataset=data, batch_size=self.batch_size,
sort=True, sort_key=lambda x: len(x.src),
device=device, train=False)
tgt_vocab = data.fields[seq2seq.tgt_field_name].vocab
pad = tgt_vocab.stoi[data.fields[seq2seq.tgt_field_name].pad_token]
with torch.no_grad():
for batch in batch_iterator:
input_variables, input_lengths = getattr(batch, seq2seq.src_field_name)
target_variables = getattr(batch, seq2seq.tgt_field_name)
decoder_outputs, decoder_hidden, other = model(input_variables, input_lengths.tolist(), target_variables)
# Evaluation
seqlist = other['sequence']
for step, step_output in enumerate(decoder_outputs):
target = target_variables[:, step + 1]
loss.eval_batch(step_output.view(target_variables.size(0), -1), target)
non_padding = target.ne(pad)
correct = seqlist[step].view(-1).eq(target).masked_select(non_padding).sum().item()
match += correct
total += non_padding.sum().item()
if total == 0:
accuracy = float('nan')
else:
accuracy = match / total
return loss.get_loss(), accuracy
示例6: train
# 需要导入模块: import seq2seq [as 别名]
# 或者: from seq2seq import models [as 别名]
def train(self, model, data, num_epochs=5,
resume=False, dev_data=None,
optimizer=None, teacher_forcing_ratio=0):
""" Run training for a given model.
Args:
model (seq2seq.models): model to run training on, if `resume=True`, it would be
overwritten by the model loaded from the latest checkpoint.
data (seq2seq.dataset.dataset.Dataset): dataset object to train on
num_epochs (int, optional): number of epochs to run (default 5)
resume(bool, optional): resume training with the latest checkpoint, (default False)
dev_data (seq2seq.dataset.dataset.Dataset, optional): dev Dataset (default None)
optimizer (seq2seq.optim.Optimizer, optional): optimizer for training
(default: Optimizer(pytorch.optim.Adam, max_grad_norm=5))
teacher_forcing_ratio (float, optional): teaching forcing ratio (default 0)
Returns:
model (seq2seq.models): trained model.
"""
# If training is set to resume
if resume:
latest_checkpoint_path = Checkpoint.get_latest_checkpoint(self.expt_dir)
resume_checkpoint = Checkpoint.load(latest_checkpoint_path)
model = resume_checkpoint.model
self.optimizer = resume_checkpoint.optimizer
# A walk around to set optimizing parameters properly
resume_optim = self.optimizer.optimizer
defaults = resume_optim.param_groups[0]
defaults.pop('params', None)
defaults.pop('initial_lr', None)
self.optimizer.optimizer = resume_optim.__class__(model.parameters(), **defaults)
start_epoch = resume_checkpoint.epoch
step = resume_checkpoint.step
else:
start_epoch = 1
step = 0
if optimizer is None:
optimizer = Optimizer(optim.Adam(model.parameters()), max_grad_norm=5)
self.optimizer = optimizer
self.logger.info("Optimizer: %s, Scheduler: %s" % (self.optimizer.optimizer, self.optimizer.scheduler))
self._train_epoches(data, model, num_epochs,
start_epoch, step, dev_data=dev_data,
teacher_forcing_ratio=teacher_forcing_ratio)
return model