本文整理汇总了Python中seaborn.set方法的典型用法代码示例。如果您正苦于以下问题:Python seaborn.set方法的具体用法?Python seaborn.set怎么用?Python seaborn.set使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类seaborn
的用法示例。
在下文中一共展示了seaborn.set方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import set [as 别名]
def __init__(self, add_inputs, title='', **kwargs):
super(OffshorePlot, self).__init__(**kwargs)
self.fig = plt.figure(num=None, facecolor='w', edgecolor='k') #figsize=(13, 8), dpi=1000
self.shape_plot = self.fig.add_subplot(121)
self.objf_plot = self.fig.add_subplot(122)
self.targname = add_inputs
self.title = title
# Adding automatically the inputs
for i in add_inputs:
self.add(i, Float(0.0, iotype='in'))
#sns.set(style="darkgrid")
#self.pal = sns.dark_palette("skyblue", as_cmap=True)
plt.rc('lines', linewidth=1)
plt.ion()
self.force_execute = True
if not pa('fig').exists():
pa('fig').mkdir()
示例2: plot_wind_rose
# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import set [as 别名]
def plot_wind_rose(wind_rose):
fig = plt.figure(figsize=(12,5), dpi=1000)
# Plotting the wind statistics
ax1 = plt.subplot(121, polar=True)
w = 2.*np.pi/len(wind_rose.frequency)
b = ax1.bar(np.pi/2.0-np.array(wind_rose.wind_directions)/180.*np.pi - w/2.0,
np.array(wind_rose.frequency)*100, width=w)
# Trick to set the right axes (by default it's not oriented as we are used to in the WE community)
mirror = lambda d: 90.0 - d if d < 90.0 else 360.0 + (90.0 - d)
ax1.set_xticklabels([u'%d\xb0'%(mirror(d)) for d in linspace(0.0, 360.0,9)[:-1]]);
ax1.set_title('Wind direction frequency');
# Plotting the Weibull A parameter
ax2 = plt.subplot(122, polar=True)
b = ax2.bar(np.pi/2.0-np.array(wind_rose.wind_directions)/180.*np.pi - w/2.0,
np.array(wind_rose.A), width=w)
ax2.set_xticklabels([u'%d\xb0'%(mirror(d)) for d in linspace(0.0, 360.0,9)[:-1]]);
ax2.set_title('Weibull A parameter per wind direction sectors');
示例3: quality_over_time
# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import set [as 别名]
def quality_over_time(dfs, path, figformat, title, plot_settings={}):
time_qual = Plot(path=path + "TimeQualityViolinPlot." + figformat,
title="Violin plot of quality over time")
sns.set(style="white", **plot_settings)
ax = sns.violinplot(x="timebin",
y="quals",
data=dfs,
inner=None,
cut=0,
linewidth=0)
ax.set(xlabel='Interval (hours)',
ylabel="Basecall quality",
title=title or time_qual.title)
plt.xticks(rotation=45, ha='center', fontsize=8)
time_qual.fig = ax.get_figure()
time_qual.save(format=figformat)
plt.close("all")
return time_qual
示例4: sequencing_speed_over_time
# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import set [as 别名]
def sequencing_speed_over_time(dfs, path, figformat, title, plot_settings={}):
time_duration = Plot(path=path + "TimeSequencingSpeed_ViolinPlot." + figformat,
title="Violin plot of sequencing speed over time")
sns.set(style="white", **plot_settings)
if "timebin" not in dfs:
dfs['timebin'] = add_time_bins(dfs)
mask = dfs['duration'] != 0
ax = sns.violinplot(x=dfs.loc[mask, "timebin"],
y=dfs.loc[mask, "lengths"] / dfs.loc[mask, "duration"],
inner=None,
cut=0,
linewidth=0)
ax.set(xlabel='Interval (hours)',
ylabel="Sequencing speed (nucleotides/second)",
title=title or time_duration.title)
plt.xticks(rotation=45, ha='center', fontsize=8)
time_duration.fig = ax.get_figure()
time_duration.save(format=figformat)
plt.close("all")
return time_duration
示例5: yield_by_minimal_length_plot
# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import set [as 别名]
def yield_by_minimal_length_plot(array, name, path,
title=None, color="#4CB391", figformat="png"):
df = pd.DataFrame(data={"lengths": np.sort(array)[::-1]})
df["cumyield_gb"] = df["lengths"].cumsum() / 10**9
yield_by_length = Plot(
path=path + "Yield_By_Length." + figformat,
title="Yield by length")
ax = sns.regplot(
x='lengths',
y="cumyield_gb",
data=df,
x_ci=None,
fit_reg=False,
color=color,
scatter_kws={"s": 3})
ax.set(
xlabel='Read length',
ylabel='Cumulative yield for minimal length',
title=title or yield_by_length.title)
yield_by_length.fig = ax.get_figure()
yield_by_length.save(format=figformat)
plt.close("all")
return yield_by_length
示例6: image
# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import set [as 别名]
def image(path: str, costs: Dict[str, int]) -> str:
ys = ['0', '1', '2', '3', '4', '5', '6', '7+', 'X']
xs = [costs.get(k, 0) for k in ys]
sns.set_style('white')
sns.set(font='Concourse C3', font_scale=3)
g = sns.barplot(ys, xs, palette=['#cccccc'] * len(ys))
g.axes.yaxis.set_ticklabels([])
rects = g.patches
sns.set(font='Concourse C3', font_scale=2)
for rect, label in zip(rects, xs):
if label == 0:
continue
height = rect.get_height()
g.text(rect.get_x() + rect.get_width()/2, height + 0.5, label, ha='center', va='bottom')
g.margins(y=0, x=0)
sns.despine(left=True, bottom=True)
g.get_figure().savefig(path, transparent=True, pad_inches=0, bbox_inches='tight')
plt.clf() # Clear all data from matplotlib so it does not persist across requests.
return path
示例7: _plot_weights
# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import set [as 别名]
def _plot_weights(self, title, file, layer_index=0, vmin=-5, vmax=5):
import seaborn as sns
sns.set_context("paper")
layers = self.iwp.estimator.steps[-1][1].coefs_
layer = layers[layer_index]
f, ax = plt.subplots(figsize=(18, 12))
weights = pd.DataFrame(layer)
weights.index = self.iwp.inputs
sns.set(font_scale=1.1)
# Draw a heatmap with the numeric values in each cell
sns.heatmap(
weights, annot=True, fmt=".1f", linewidths=.5, ax=ax,
cmap="difference", center=0, vmin=vmin, vmax=vmax,
# annot_kws={"size":14},
)
ax.tick_params(labelsize=18)
f.tight_layout()
f.savefig(file)
示例8: enrich_activity
# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import set [as 别名]
def enrich_activity(seqs, seqs_1hot, targets, activity_enrich, target_indexes):
""" Filter data for the most active sequences in the set. """
# compute the max across sequence lengths and mean across targets
seq_scores = targets[:, :, target_indexes].max(axis=1).mean(
axis=1, dtype='float64')
# sort the sequences
scores_indexes = [(seq_scores[si], si) for si in range(seq_scores.shape[0])]
scores_indexes.sort(reverse=True)
# filter for the top
enrich_indexes = sorted(
[scores_indexes[si][1] for si in range(seq_scores.shape[0])])
enrich_indexes = enrich_indexes[:int(activity_enrich * len(enrich_indexes))]
seqs = [seqs[ei] for ei in enrich_indexes]
seqs_1hot = seqs_1hot[enrich_indexes]
targets = targets[enrich_indexes]
return seqs, seqs_1hot, targets
示例9: plot_kernel
# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import set [as 别名]
def plot_kernel(kernel_weights, out_pdf):
depth, width = kernel_weights.shape
fig_width = 2 + 1.5*np.log2(width)
# normalize
kernel_weights -= kernel_weights.mean(axis=0)
# plot
sns.set(font_scale=1.5)
plt.figure(figsize=(fig_width, depth))
sns.heatmap(kernel_weights, cmap='PRGn', linewidths=0.2, center=0)
ax = plt.gca()
ax.set_xticklabels(range(1,width+1))
if depth == 4:
ax.set_yticklabels('ACGT', rotation='horizontal')
else:
ax.set_yticklabels(range(1,depth+1), rotation='horizontal')
plt.savefig(out_pdf)
plt.close()
示例10: generate_speed_graph
# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import set [as 别名]
def generate_speed_graph(data, filename="als_speed.png", keys=['gpu', 'cg2', 'cg3', 'cholesky'],
labels=None, colours=None):
labels = labels or {}
colours = colours or {}
seaborn.set()
fig, ax = plt.subplots()
factors = data['factors']
for key in keys:
ax.plot(factors, data[key],
color=colours.get(key, COLOURS.get(key)),
marker='o', markersize=6)
ax.text(factors[-1] + 5, data[key][-1], labels.get(key, LABELS[key]), fontsize=10)
ax.set_ylabel("Seconds per Iteration")
ax.set_xlabel("Factors")
plt.savefig(filename, bbox_inches='tight', dpi=300)
示例11: main
# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import set [as 别名]
def main():
args = parse_args()
X, labels = np.loadtxt(args.embeddings_path), np.loadtxt(args.labels_path, dtype=np.str)
tsne = TSNE(n_components=2, n_iter=10000, perplexity=5, init='pca', learning_rate=200, verbose=1)
transformed = tsne.fit_transform(X)
y = set(labels)
labels = np.array(labels)
plt.figure(figsize=(20, 14))
colors = cm.rainbow(np.linspace(0, 1, len(y)))
for label, color in zip(y, colors):
points = transformed[labels == label, :]
plt.scatter(points[:, 0], points[:, 1], c=[color], label=label, s=200, alpha=0.5)
for p1, p2 in random.sample(list(zip(points[:, 0], points[:, 1])), k=min(1, len(points))):
plt.annotate(label, (p1, p2), fontsize=30)
plt.savefig('tsne_visualization.png', transparent=True, bbox_inches='tight', pad_inches=0)
plt.show()
示例12: getEdgeHistogram
# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import set [as 别名]
def getEdgeHistogram(inGraph, refGraph):
falsePositives = set(inGraph.edges()).difference(refGraph.edges())
edgeHistogramCounts = {0:0}
for fe in falsePositives:
u,v = fe
try:
path = nx.dijkstra_path(refGraph,u,v)
pathlength = len(path) -1
if pathlength in edgeHistogramCounts.keys():
edgeHistogramCounts[pathlength] +=1
else:
edgeHistogramCounts[pathlength] = 0
except nx.exception.NetworkXNoPath:
edgeHistogramCounts[0] +=1
return edgeHistogramCounts
示例13: make_reddit_prop_plt
# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import set [as 别名]
def make_reddit_prop_plt():
sns.set()
prop_expt = pd.DataFrame(att.process_propensity_experiment())
prop_expt = prop_expt[['exog', 'plugin', 'one_step_tmle', 'very_naive']]
prop_expt = prop_expt.rename(index=str, columns={'exog': 'Exogeneity',
'very_naive': 'Unadjusted',
'plugin': 'Plug-in',
'one_step_tmle': 'TMLE'})
prop_expt = prop_expt.set_index('Exogeneity')
plt.figure(figsize=(4.75, 3.00))
# plt.figure(figsize=(2.37, 1.5))
sns.scatterplot(data=prop_expt, legend='brief', s=75)
plt.xlabel("Exogeneity", fontfamily='monospace')
plt.ylabel("NDE Estimate", fontfamily='monospace')
plt.tight_layout()
fig_dir = '../output/figures'
os.makedirs(fig_dir, exist_ok=True)
plt.savefig(os.path.join(fig_dir,'reddit_propensity.pdf'))
示例14: get_protein_feather_paths
# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import set [as 别名]
def get_protein_feather_paths(protgroup, memornot, protgroup_dict, protein_feathers_dir, core_only_genes=None):
"""
protgroup example: ('subsystem', 'cog_primary', 'H')
memornot example: ('vizrecon', 'membrane')
protgroup_dict example: {'databases': {'redoxdb': {'experimental_sensitive_cys': ['b2518','b3352','b2195','b4016'], ...}}}
"""
prots_memornot = protgroup_dict['localization'][memornot[0]][memornot[1]]
if protgroup[0] == 'localization':
if protgroup[2] != 'all':
if memornot[1] in ['membrane', 'inner_membrane', 'outer_membrane'] and protgroup[2] not in ['membrane', 'inner_membrane', 'outer_membrane']:
return []
if memornot[1] not in ['membrane', 'inner_membrane', 'outer_membrane'] and protgroup[2] in ['membrane', 'inner_membrane', 'outer_membrane']:
return []
prots_group = protgroup_dict[protgroup[0]][protgroup[1]][protgroup[2]]
prots_filtered = list(set(prots_group).intersection(prots_memornot))
if core_only_genes:
prots_filtered = list(set(prots_filtered).intersection(core_only_genes))
return [op.join(protein_feathers_dir, '{}_protein_strain_properties.fthr'.format(x)) for x in prots_filtered if op.exists(op.join(protein_feathers_dir, '{}_protein_strain_properties.fthr'.format(x)))]
示例15: make_biplot
# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import set [as 别名]
def make_biplot(self, pc_x=1, pc_y=2, outpath=None, dpi=150, custom_markers=None, custom_order=None):
if not custom_order:
custom_order = sorted(self.observations_df[self.observation_colname].unique().tolist())
if not custom_markers:
custom_markers = self.markers
plot = sns.lmplot(data=self.principal_observations_df,
x=self.principal_observations_df.columns[pc_x - 1],
y=self.principal_observations_df.columns[pc_y - 1],
hue=self.observation_colname,
hue_order=custom_order,
fit_reg=False,
size=6,
markers=custom_markers,
scatter_kws={'alpha': 0.5})
plot = (plot.set(title='PC{} vs. PC{}'.format(pc_x, pc_y)))
if outpath:
plot.savefig(outpath, dpi=dpi)
else:
plt.show()
plt.close()