本文整理汇总了Python中seaborn.distplot方法的典型用法代码示例。如果您正苦于以下问题:Python seaborn.distplot方法的具体用法?Python seaborn.distplot怎么用?Python seaborn.distplot使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类seaborn
的用法示例。
在下文中一共展示了seaborn.distplot方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: plot_binarization
# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import distplot [as 别名]
def plot_binarization(auc_mtx: pd.DataFrame, regulon_name: str, threshold: float, bins: int=200, ax=None) -> None:
"""
Plot the "binarization" process for the given regulon.
:param auc_mtx: The dataframe with the AUC values for all cells and regulons (n_cells x n_regulons).
:param regulon_name: The name of the regulon.
:param bins: The number of bins to use in the AUC histogram.
:param threshold: The threshold to use for binarization.
"""
if ax is None:
ax=plt.gca()
sns.distplot(auc_mtx[regulon_name], ax=ax, norm_hist=True, bins=bins)
ylim = ax.get_ylim()
ax.plot([threshold]*2, ylim, 'r:')
ax.set_ylim(ylim)
ax.set_xlabel('AUC')
ax.set_ylabel('#')
ax.set_title(regulon_name)
示例2: joint_plot
# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import distplot [as 别名]
def joint_plot(x, y, xlabel=None,
ylabel=None, xlim=None, ylim=None,
loc="best", color='#0485d1',
size=8, markersize=50, kind="kde",
scatter_color="r"):
with sns.axes_style("darkgrid"):
if xlabel and ylabel:
g = SubsampleJointGrid(xlabel, ylabel,
data=DataFrame(data={xlabel: x, ylabel: y}),
space=0.1, ratio=2, size=size, xlim=xlim, ylim=ylim)
else:
g = SubsampleJointGrid(x, y, size=size,
space=0.1, ratio=2, xlim=xlim, ylim=ylim)
g.plot_joint(sns.kdeplot, shade=True, cmap="Blues")
g.plot_sub_joint(plt.scatter, 1000, s=20, c=scatter_color, alpha=0.3)
g.plot_marginals(sns.distplot, kde=False, rug=False)
g.annotate(ss.pearsonr, fontsize=25, template="{stat} = {val:.2g}\np = {p:.2g}")
g.ax_joint.set_yticklabels(g.ax_joint.get_yticks())
g.ax_joint.set_xticklabels(g.ax_joint.get_xticks())
return g
示例3: distplot_messages_per_hour
# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import distplot [as 别名]
def distplot_messages_per_hour(msgs, path_to_save):
sns.set(style="whitegrid")
ax = sns.distplot([msg.date.hour for msg in msgs], bins=range(25), color="m", kde=False)
ax.set_xticklabels(stools.get_hours())
ax.set(xlabel="hour", ylabel="messages")
ax.margins(x=0)
plt.xticks(range(24), rotation=65)
plt.tight_layout()
fig = plt.gcf()
fig.set_size_inches(11, 8)
fig.savefig(os.path.join(path_to_save, distplot_messages_per_hour.__name__ + ".png"), dpi=500)
# plt.show()
log_line(f"{distplot_messages_per_hour.__name__} was created.")
plt.close("all")
示例4: distplot_messages_per_day
# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import distplot [as 别名]
def distplot_messages_per_day(msgs, path_to_save):
sns.set(style="whitegrid")
data = stools.get_messages_per_day(msgs)
max_day_len = len(max(data.values(), key=len))
ax = sns.distplot([len(day) for day in data.values()], bins=list(range(0, max_day_len, 50)) + [max_day_len],
color="m", kde=False)
ax.set(xlabel="messages", ylabel="days")
ax.margins(x=0)
fig = plt.gcf()
fig.set_size_inches(11, 8)
fig.savefig(os.path.join(path_to_save, distplot_messages_per_day.__name__ + ".png"), dpi=500)
# plt.show()
log_line(f"{distplot_messages_per_day.__name__} was created.")
plt.close("all")
示例5: distplot_messages_per_month
# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import distplot [as 别名]
def distplot_messages_per_month(msgs, path_to_save):
sns.set(style="whitegrid")
start_date = msgs[0].date.date()
(xticks, xticks_labels, xlabel) = _get_xticks(msgs)
ax = sns.distplot([(msg.date.date() - start_date).days for msg in msgs],
bins=xticks + [(msgs[-1].date.date() - start_date).days], color="m", kde=False)
ax.set_xticklabels(xticks_labels)
ax.set(xlabel=xlabel, ylabel="messages")
ax.margins(x=0)
plt.xticks(xticks, rotation=65)
plt.tight_layout()
fig = plt.gcf()
fig.set_size_inches(11, 8)
fig.savefig(os.path.join(path_to_save, distplot_messages_per_month.__name__ + ".png"), dpi=500)
# plt.show()
log_line(f"{distplot_messages_per_month.__name__} was created.")
plt.close("all")
示例6: plot_mean_bootstrap_exponential_readme
# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import distplot [as 别名]
def plot_mean_bootstrap_exponential_readme():
X = np.random.exponential(7, 4)
classical_samples = [np.mean(resample(X)) for _ in range(10000)]
posterior_samples = mean(X, 10000)
l, r = highest_density_interval(posterior_samples)
classical_l, classical_r = highest_density_interval(classical_samples)
plt.subplot(2, 1, 1)
plt.title('Bayesian Bootstrap of mean')
sns.distplot(posterior_samples, label='Bayesian Bootstrap Samples')
plt.plot([l, r], [0, 0], linewidth=5.0, marker='o', label='95% HDI')
plt.xlim(-1, 18)
plt.legend()
plt.subplot(2, 1, 2)
plt.title('Classical Bootstrap of mean')
sns.distplot(classical_samples, label='Classical Bootstrap Samples')
plt.plot([classical_l, classical_r], [0, 0], linewidth=5.0, marker='o', label='95% HDI')
plt.xlim(-1, 18)
plt.legend()
plt.savefig('readme_exponential.png', bbox_inches='tight')
示例7: histogram
# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import distplot [as 别名]
def histogram(self, column, **kwargs):
"""
Generate the histogram of a given column for all assets in group.
Parameters:
- column: The name of the column to visualize.
- kwargs: Additional keyword arguments to pass down
to the plotting function.
Returns:
A matplotlib Axes object.
"""
fig, axes = self._get_layout()
for ax, (name, data) in zip(axes, self.data.groupby(self.group_by)):
sns.distplot(data[column], ax=ax, axlabel=f'{name} - {column}')
return axes
示例8: export_animation
# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import distplot [as 别名]
def export_animation(anim_frames):
i = 0
for t_data, g_data in anim_frames:
f, ax = plt.subplots(figsize=(12, 8))
f.suptitle('Generative Adversarial Network', fontsize=15)
plt.xlabel('Data values')
plt.ylabel('Probability density')
ax.set_xlim(-2, 10)
ax.set_ylim(0, 1.2)
sns.distplot(t_data, hist=False, rug=True, color='r', label='Target Data', ax=ax)
sns.distplot(g_data, hist=False, rug=True, color='g', label='Generated Data', ax=ax)
f.savefig("images/frame_" + str(i) + ".png")
print "Frame index: ", i * SAMPLE_RATE
f.clf()
plt.close()
i += 1
# Generate mp4 from images:
# avconv -r 10 -i frame_%d.png -b:v 1000k gan.mp4
# convert -delay 20 -loop 0 output/decision_*.png myimage.gif
示例9: _plot_results_accuracy_diff_distr
# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import distplot [as 别名]
def _plot_results_accuracy_diff_distr(results_df, save_cfg):
"""Plot the distribution of difference in accuracy.
"""
fig, ax = plt.subplots(figsize=(save_cfg['text_width'],
save_cfg['text_height'] * 0.5))
sns.distplot(results_df['acc_diff'], kde=False, rug=True, ax=ax)
ax.set_xlabel('Accuracy difference')
ax.set_ylabel('Number of studies')
plt.tight_layout()
if save_cfg is not None:
savename = 'reported_accuracy_diff_distr'
fname = os.path.join(save_cfg['savepath'], savename)
fig.savefig(fname + '.' + save_cfg['format'], **save_cfg)
return ax
示例10: plot_number_channels
# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import distplot [as 别名]
def plot_number_channels(df, save_cfg=cfg.saving_config):
"""Plot histogram of number of channels.
"""
nb_channels_df = ut.split_column_with_multiple_entries(
df, 'Nb Channels', ref_col='Citation', sep=';\n', lower=False)
nb_channels_df['Nb Channels'] = nb_channels_df['Nb Channels'].astype(int)
nb_channels_df = nb_channels_df.loc[nb_channels_df['Nb Channels'] > 0, :]
fig, ax = plt.subplots(
figsize=(save_cfg['text_width'] / 2, save_cfg['text_height'] / 4))
sns.distplot(nb_channels_df['Nb Channels'], kde=False, norm_hist=False, ax=ax)
ax.set_xlabel('Number of EEG channels')
ax.set_ylabel('Number of papers')
logger.info('Stats on number of channels per model: {}'.format(
nb_channels_df['Nb Channels'].describe()))
plt.tight_layout()
if save_cfg is not None:
fname = os.path.join(save_cfg['savepath'], 'nb_channels')
fig.savefig(fname + '.' + save_cfg['format'], **save_cfg)
return ax
示例11: draw_dist_plots_summary_cols
# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import distplot [as 别名]
def draw_dist_plots_summary_cols(df_train, target, summary_cols):
colors = cycle('byrcmgkbyrcmgkbyrcmgkbyrcmgkbyr')
target_names = np.unique(df_train[target])
ncols =2
nrows = int((len(summary_cols)/2)+0.50)
fig, axes = plt.subplots(ncols=ncols, nrows=nrows, figsize=(20,nrows*6), dpi=100)
axs = []
for i in range(nrows):
for j in range(ncols):
axs.append('axes['+str(i)+','+str(j)+']')
labels = []
for axi, feature in enumerate(summary_cols):
for target_name in target_names:
label = str(target_name)
color = next(colors)
sns.distplot(df_train.loc[df_train[target] == target_name][feature],
label=label,
ax=eval(axs[axi]), color=color, kde_kws={'bw':1.5})
labels.append(label)
plt.legend(labels=labels)
plt.show();
#############################################################################
示例12: plot_posterior_histogram
# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import distplot [as 别名]
def plot_posterior_histogram(model, variables, number_samples=300): #TODO: fix code duplication
# Get samples
sample = model.get_sample(number_samples)
post_sample = model.get_posterior_sample(number_samples)
# Join samples
sample["Mode"] = "Prior"
post_sample["Mode"] = "Posterior"
subsample = sample[variables + ["Mode"]]
post_subsample = post_sample[variables + ["Mode"]]
joint_subsample = subsample.append(post_subsample)
# Plot posterior
warnings.filterwarnings('ignore')
g = sns.PairGrid(joint_subsample, hue="Mode")
g = g.map_offdiag(sns.distplot)
g = g.map_diag(sns.distplot)
g = g.add_legend()
warnings.filterwarnings('default')
示例13: disp_gap_bydate
# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import distplot [as 别名]
def disp_gap_bydate(self):
gaps_mean = self.gapdf.groupby('time_date')['gap'].mean()
gaps_mean.plot(kind='bar')
plt.ylabel('Mean of gap')
plt.title('Date/Gap Correlation')
# for i in gaps_mean.index:
# plt.plot([i,i], [0, gaps_mean[i]], 'k-')
plt.show()
return
# def drawGapDistribution(self):
# self.gapdf[self.gapdf['gapdf'] < 10]['gapdf'].hist(bins=50)
# # sns.distplot(self.gapdf['gapdf']);
# # sns.distplot(self.gapdf['gapdf'], hist=True, kde=False, rug=False)
# # plt.hist(self.gapdf['gapdf'])
# plt.show()
# return
# def drawGapCorrelation(self):
# _, (ax1, ax2) = plt.subplots(nrows=2, ncols=1)
# res = self.gapdf.groupby('start_district_id')['gapdf'].sum()
# ax1.bar(res.index, res.values)
# res = self.gapdf.groupby('time_slotid')['gapdf'].sum()
# ax2.bar(res.index.map(lambda x: x[11:]), res.values)
# plt.show()
# return
示例14: traffic_districution
# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import distplot [as 别名]
def traffic_districution(self):
data_dir = g_singletonDataFilePath.getTrainDir()
df = self.load_trafficdf(data_dir)
print df['traffic'].describe()
# sns.distplot(self.gapdf['gap'],kde=False, bins=100);
df['traffic'].plot(kind='hist', bins=100)
plt.xlabel('Traffic')
plt.title('Histogram of Traffic')
return
# def disp_gap_bydistrict(self, disp_ids = np.arange(34,67,1), cls1 = 'start_district_id', cls2 = 'time_id'):
# # disp_ids = np.arange(1,34,1)
# plt.figure()
# by_district = self.gapdf.groupby(cls1)
# size = len(disp_ids)
# # size = len(by_district)
# col_len = row_len = math.ceil(math.sqrt(size))
# count = 1
# for name, group in by_district:
# if not name in disp_ids:
# continue
# plt.subplot(row_len, col_len, count)
# group.groupby(cls2)['gap'].mean().plot()
# count += 1
# return
示例15: plot_target_distribution
# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import distplot [as 别名]
def plot_target_distribution(y_test, cfg):
if 'xml_path' in cfg['dataset']:
basename = os.path.basename(cfg['dataset']['xml_path'])
patient_id = basename.split('-')[0]
else:
patient_id = ""
if 'scale' in cfg['dataset']:
scale = float(cfg['dataset']['scale'])
else:
scale = 1.0
plt.figure()
sns.distplot(y_test.flatten()/scale, kde=False, norm_hist=True)
save_path = os.path.join(cfg['train']['artifacts_path'], "{}_dist_plot.pdf".format(patient_id))
print("saving plot to: ", save_path)
plt.savefig(save_path, dpi=300)