当前位置: 首页>>代码示例>>Python>>正文


Python seaborn.cubehelix_palette方法代码示例

本文整理汇总了Python中seaborn.cubehelix_palette方法的典型用法代码示例。如果您正苦于以下问题:Python seaborn.cubehelix_palette方法的具体用法?Python seaborn.cubehelix_palette怎么用?Python seaborn.cubehelix_palette使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在seaborn的用法示例。


在下文中一共展示了seaborn.cubehelix_palette方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: plot_heatmap

# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import cubehelix_palette [as 别名]
def plot_heatmap(outpath, df, sample_linkage, sample_colors, event_linkage, desc, sample_color_lut):

    assert desc.lower().startswith('altsplice') or desc.lower().startswith('expression')
    is_altsplice = desc.lower().startswith('altsplice')

    sys.setrecursionlimit(100000)
    print "Plotting data ... "
    graph = sns.clustermap(df.T,
                       col_colors=sample_colors,
                       col_linkage=sample_linkage, row_linkage=event_linkage,
                       cmap = sns.cubehelix_palette(as_cmap=True))
    graph.ax_heatmap.axis('off')
    graph.ax_col_dendrogram.set_title("%s Clustering" %' '.join(desc.split('_')).title())
    graph.ax_heatmap.set_xlabel("Events")
    graph.ax_heatmap.set_ylabel("Samples")
    if is_altsplice: graph.cax.set_title("psi")
    else: graph.cax.set_title("log(counts)")
    add_legend(graph, sample_color_lut)
    plot_utils.save(outpath)
    return 
开发者ID:ratschlab,项目名称:pancanatlas_code_public,代码行数:22,代码来源:plot_heatmaps.py

示例2: plot_heatmaps

# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import cubehelix_palette [as 别名]
def plot_heatmaps(data, mis, column_label, cont, topk=30, prefix=''):
    cmap = sns.cubehelix_palette(as_cmap=True, light=.9)
    m, nv = mis.shape
    for j in range(m):
        inds = np.argsort(- mis[j, :])[:topk]
        if len(inds) >= 2:
            plt.clf()
            order = np.argsort(cont[:,j])
            subdata = data[:, inds][order].T
            subdata -= np.nanmean(subdata, axis=1, keepdims=True)
            subdata /= np.nanstd(subdata, axis=1, keepdims=True)
            columns = [column_label[i] for i in inds]
            sns.heatmap(subdata, vmin=-3, vmax=3, cmap=cmap, yticklabels=columns, xticklabels=False, mask=np.isnan(subdata))
            filename = '{}/heatmaps/group_num={}.png'.format(prefix, j)
            if not os.path.exists(os.path.dirname(filename)):
                os.makedirs(os.path.dirname(filename))
            plt.title("Latent factor {}".format(j))
            plt.yticks(rotation=0)
            plt.savefig(filename, bbox_inches='tight')
            plt.close('all')
            #plot_rels(data[:, inds], map(lambda q: column_label[q], inds), colors=cont[:, j],
            #          outfile=prefix + '/relationships/group_num=' + str(j), latent=labels[:, j], alpha=0.1) 
开发者ID:gregversteeg,项目名称:LinearCorex,代码行数:24,代码来源:vis_corex.py

示例3: _parse_heatmap_metadata_annotations

# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import cubehelix_palette [as 别名]
def _parse_heatmap_metadata_annotations(metadata_column, margin_palette):
    '''
    Transform feature or sample metadata into color vector for annotating
    margin of clustermap.
    Parameters
    ----------
    metadata_column: pd.Series of metadata for annotating plots
    margin_palette: str
        Name of color palette to use for annotating metadata
        along margin(s) of clustermap.
    Returns
    -------
    Returns vector of colors for annotating clustermap and dict mapping colors
    to classes.
    '''
    # Create a categorical palette to identify md col
    metadata_column = metadata_column.astype(str)
    col_names = sorted(metadata_column.unique())

    # Select Color palette
    if margin_palette == 'colorhelix':
        col_palette = sns.cubehelix_palette(
            len(col_names), start=2, rot=3, dark=0.3, light=0.8, reverse=True)
    else:
        col_palette = sns.color_palette(margin_palette, len(col_names))
    class_colors = dict(zip(col_names, col_palette))

    # Convert the palette to vectors that will be drawn on the matrix margin
    col_colors = metadata_column.map(class_colors)

    return col_colors, class_colors 
开发者ID:biocore,项目名称:mmvec,代码行数:33,代码来源:heatmap.py

示例4: plot_heatmaps

# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import cubehelix_palette [as 别名]
def plot_heatmaps(data, alpha, mis, column_label, cont, topk=40, athresh=0.2, prefix=''):
    import seaborn as sns
    cmap = sns.cubehelix_palette(as_cmap=True, light=.9)
    import matplotlib.pyplot as plt
    m, nv = mis.shape
    for j in range(m):
        inds = np.where(np.logical_and(alpha[j] > athresh, mis[j] > 0.))[0]
        inds = inds[np.argsort(- alpha[j, inds] * mis[j, inds])][:topk]
        if len(inds) >= 2:
            plt.clf()
            order = np.argsort(cont[:,j])
            if type(data) == np.ndarray:
                subdata = data[:, inds][order].T
            else:
                # assume sparse
                subdata = data[:, inds].toarray()
                subdata = subdata[order].T
            columns = [column_label[i] for i in inds]
            fig, ax = plt.subplots(figsize=(20, 10))
            sns.heatmap(subdata, vmin=0, vmax=1, cmap=cmap, yticklabels=columns, xticklabels=False, ax=ax, cbar_kws={"ticks": [0, 0.5, 1]})
            plt.yticks(rotation=0)
            filename = '{}/heatmaps/group_num={}.png'.format(prefix, j)
            if not os.path.exists(os.path.dirname(filename)):
                os.makedirs(os.path.dirname(filename))
            plt.title("Latent factor {}".format(j))
            plt.savefig(filename, bbox_inches='tight')
            plt.close('all')
            #plot_rels(data[:, inds], map(lambda q: column_label[q], inds), colors=cont[:, j],
            #          outfile=prefix + '/relationships/group_num=' + str(j), latent=labels[:, j], alpha=0.1) 
开发者ID:gregversteeg,项目名称:corex_topic,代码行数:31,代码来源:vis_topic.py

示例5: get_colorbar

# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import cubehelix_palette [as 别名]
def get_colorbar(dfr, classes):
    """Return a colorbar representing classes, for a Seaborn plot.

    :param dfr:
    :param classes:

    The aim is to get a pd.Series for the passed dataframe columns,
    in the form:
    0    colour for class in col 0
    1    colour for class in col 1
    ...  colour for class in col ...
    n    colour for class in col n
    """
    levels = sorted(list(set(classes.values())))
    paldict = dict(
        zip(
            levels,
            sns.cubehelix_palette(
                len(levels), light=0.9, dark=0.1, reverse=True, start=1, rot=-2
            ),
        )
    )
    lvl_pal = {cls: paldict[lvl] for (cls, lvl) in list(classes.items())}
    # Have to use string conversion of the dataframe index, here
    col_cb = pd.Series([str(_) for _ in dfr.index]).map(lvl_pal)
    # The col_cb Series index now has to match the dfr.index, but
    # we don't create the Series with this (and if we try, it
    # fails) - so change it with this line
    col_cb.index = dfr.index
    return col_cb


# Add labels to the seaborn heatmap axes 
开发者ID:widdowquinn,项目名称:pyani,代码行数:35,代码来源:__init__.py

示例6: plot_heatmaps

# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import cubehelix_palette [as 别名]
def plot_heatmaps(data, labels, alpha, mis, column_label, cont, topk=20, prefix='', focus=''):
    cmap = sns.cubehelix_palette(as_cmap=True, light=.9)
    m, nv = mis.shape
    for j in range(m):
        inds = np.where(np.logical_and(alpha[j] > 0, mis[j] > 0.))[0]
        inds = inds[np.argsort(- alpha[j, inds] * mis[j, inds])][:topk]
        if focus in column_label:
            ifocus = column_label.index(focus)
            if not ifocus in inds:
                inds = np.insert(inds, 0, ifocus)
        if len(inds) >= 2:
            plt.clf()
            order = np.argsort(cont[:,j])
            subdata = data[:, inds][order].T
            subdata -= np.nanmean(subdata, axis=1, keepdims=True)
            subdata /= np.nanstd(subdata, axis=1, keepdims=True)
            columns = [column_label[i] for i in inds]
            sns.heatmap(subdata, vmin=-3, vmax=3, cmap=cmap, yticklabels=columns, xticklabels=False, mask=np.isnan(subdata))
            filename = '{}/heatmaps/group_num={}.png'.format(prefix, j)
            if not os.path.exists(os.path.dirname(filename)):
                os.makedirs(os.path.dirname(filename))
            plt.title("Latent factor {}".format(j))
            plt.savefig(filename, bbox_inches='tight')
            plt.close('all')
            #plot_rels(data[:, inds], list(map(lambda q: column_label[q], inds)), colors=cont[:, j],
            #          outfile=prefix + '/relationships/group_num=' + str(j), latent=labels[:, j], alpha=0.1) 
开发者ID:gregversteeg,项目名称:bio_corex,代码行数:28,代码来源:vis_corex.py

示例7: plot_pairplots

# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import cubehelix_palette [as 别名]
def plot_pairplots(data, labels, alpha, mis, column_label, topk=5, prefix='', focus=''):
    cmap = sns.cubehelix_palette(as_cmap=True, light=.9)
    plt.rcParams.update({'font.size': 32})
    m, nv = mis.shape
    for j in range(m):
        inds = np.where(np.logical_and(alpha[j] > 0, mis[j] > 0.))[0]
        inds = inds[np.argsort(- alpha[j, inds] * mis[j, inds])][:topk]
        if focus in column_label:
            ifocus = column_label.index(focus)
            if not ifocus in inds:
                inds = np.insert(inds, 0, ifocus)
        if len(inds) >= 2:
            plt.clf()
            subdata = data[:, inds]
            columns = [column_label[i] for i in inds]
            subdata = pd.DataFrame(data=subdata, columns=columns)

            try:
                sns.pairplot(subdata, kind="reg", diag_kind="kde", height=5, dropna=True)
                filename = '{}/pairplots_regress/group_num={}.pdf'.format(prefix, j)
                if not os.path.exists(os.path.dirname(filename)):
                    os.makedirs(os.path.dirname(filename))
                plt.suptitle("Latent factor {}".format(j), y=1.01)
                plt.savefig(filename, bbox_inches='tight')
                plt.clf()
            except:
                pass

            subdata['Latent factor'] = labels[:,j]
            try:
                sns.pairplot(subdata, kind="scatter", dropna=True, vars=subdata.columns.drop('Latent factor'), hue="Latent factor", diag_kind="kde", height=5)
                filename = '{}/pairplots/group_num={}.pdf'.format(prefix, j)
                if not os.path.exists(os.path.dirname(filename)):
                    os.makedirs(os.path.dirname(filename))
                plt.suptitle("Latent factor {}".format(j), y=1.01)
                plt.savefig(filename, bbox_inches='tight')
                plt.close('all')
            except:
                pass 
开发者ID:gregversteeg,项目名称:bio_corex,代码行数:41,代码来源:vis_corex.py


注:本文中的seaborn.cubehelix_palette方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。