本文整理汇总了Python中seaborn.catplot方法的典型用法代码示例。如果您正苦于以下问题:Python seaborn.catplot方法的具体用法?Python seaborn.catplot怎么用?Python seaborn.catplot使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类seaborn
的用法示例。
在下文中一共展示了seaborn.catplot方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _plot_results_per_citation_task
# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import catplot [as 别名]
def _plot_results_per_citation_task(results_df, save_cfg):
"""Plot scatter plot of accuracy for each condition and task.
"""
fig, ax = plt.subplots(figsize=(save_cfg['text_width'],
save_cfg['text_height'] * 1.3))
# figsize = plt.rcParams.get('figure.figsize')
# fig, ax = plt.subplots(figsize=(figsize[0], figsize[1] * 4))
# Need to make the graph taller otherwise the y axis labels are on top of
# each other.
sns.catplot(y='citation_task', x='Result', hue='model_type', data=results_df,
ax=ax)
ax.set_xlabel('accuracy')
ax.set_ylabel('')
plt.tight_layout()
if save_cfg is not None:
savename = 'reported_results'
fname = os.path.join(save_cfg['savepath'], savename)
fig.savefig(fname + '.' + save_cfg['format'], **save_cfg)
return ax
示例2: _plot_results_accuracy_diff_scatter
# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import catplot [as 别名]
def _plot_results_accuracy_diff_scatter(results_df, save_cfg):
"""Plot difference in accuracy for each condition/task as a scatter plot.
"""
fig, ax = plt.subplots(figsize=(save_cfg['text_width'],
save_cfg['text_height'] * 1.3))
# figsize = plt.rcParams.get('figure.figsize')
# fig, ax = plt.subplots(figsize=(figsize[0], figsize[1] * 2))
sns.catplot(y='Task', x='acc_diff', data=results_df, ax=ax)
ax.set_xlabel('Accuracy difference')
ax.set_ylabel('')
ax.axvline(0, c='k', alpha=0.2)
plt.tight_layout()
if save_cfg is not None:
savename = 'reported_accuracy_diff_scatter'
fname = os.path.join(save_cfg['savepath'], savename)
fig.savefig(fname + '.' + save_cfg['format'], **save_cfg)
return ax
示例3: plot_hardware
# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import catplot [as 别名]
def plot_hardware(df, save_cfg=cfg.saving_config):
"""Plot bar graph showing the hardware used in the study.
"""
col = 'EEG Hardware'
hardware_df = ut.split_column_with_multiple_entries(
df, col, ref_col='Citation', sep=',', lower=False)
# Remove N/Ms because they make it hard to see anything
hardware_df = hardware_df[hardware_df[col] != 'N/M']
# Add low cost column
hardware_df['Low-cost'] = False
low_cost_devices = ['EPOC (Emotiv)', 'OpenBCI (OpenBCI)', 'Muse (InteraXon)',
'Mindwave Mobile (Neurosky)', 'Mindset (NeuroSky)']
hardware_df.loc[hardware_df[col].isin(low_cost_devices),
'Low-cost'] = True
fig, ax = plt.subplots(figsize=(save_cfg['text_width'] / 4 * 2,
save_cfg['text_height'] / 5 * 2))
sns.countplot(hue=hardware_df['Low-cost'], y=hardware_df[col], ax=ax,
order=hardware_df[col].value_counts().index,
dodge=False)
# sns.catplot(row=hardware_df['low_cost'], y=hardware_df['hardware'])
ax.set_xlabel('Number of papers')
ax.set_ylabel('')
plt.tight_layout()
if save_cfg is not None:
fname = os.path.join(save_cfg['savepath'], 'hardware')
fig.savefig(fname + '.' + save_cfg['format'], **save_cfg)
return ax
示例4: plot_discovered_missed_clusters
# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import catplot [as 别名]
def plot_discovered_missed_clusters(dataframe, file_path=''):
"""Plot location clusters comparing agents missed and discovered incidents."""
plot_height = 5
aspect_ratio = 1.3
sns.catplot(
x='param_value',
y='missed_incidents',
data=dataframe,
hue='agent_type',
palette='deep',
height=plot_height,
aspect=aspect_ratio,
s=8,
legend=False)
plt.xlabel('Dynamic factor', fontsize=LARGE_FONTSIZE)
plt.ylabel('Missed incidents for each location', fontsize=LARGE_FONTSIZE)
plt.xticks(fontsize=MEDIUM_FONTSIZE)
plt.yticks(fontsize=MEDIUM_FONTSIZE)
plt.legend(fontsize=MEDIUM_FONTSIZE, title_fontsize=MEDIUM_FONTSIZE)
plt.tight_layout()
plt.savefig(file_path + '_missed.pdf')
sns.catplot(
x='param_value',
y='discovered_incidents',
data=dataframe,
hue='agent_type',
height=plot_height,
aspect=aspect_ratio,
s=8,
legend=False)
plt.xlabel('Dynamic factor', fontsize=LARGE_FONTSIZE)
plt.ylabel('Discovered incidents for each location', fontsize=LARGE_FONTSIZE)
plt.xticks(fontsize=MEDIUM_FONTSIZE)
plt.yticks(fontsize=MEDIUM_FONTSIZE)
plt.legend(fontsize=MEDIUM_FONTSIZE, title_fontsize=MEDIUM_FONTSIZE)
plt.tight_layout()
plt.savefig(file_path + '_discovered.pdf')
示例5: plot_total_miss_discovered
# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import catplot [as 别名]
def plot_total_miss_discovered(dataframe, file_path=''):
"""Plot bar charts comparing agents total missed and discovered incidents."""
plot_height = 5
aspect_ratio = 1.3
sns.set_style('whitegrid')
sns.despine()
sns.catplot(
x='param_value',
y='total_missed',
data=dataframe,
hue='agent_type',
kind='bar',
palette='muted',
height=plot_height,
aspect=aspect_ratio,
legend=False)
plt.xlabel('Dynamic factor', fontsize=LARGE_FONTSIZE)
plt.ylabel('Total missed incidents', fontsize=LARGE_FONTSIZE)
plt.xticks(fontsize=MEDIUM_FONTSIZE)
plt.yticks(fontsize=MEDIUM_FONTSIZE)
plt.legend(fontsize=MEDIUM_FONTSIZE, title_fontsize=MEDIUM_FONTSIZE)
plt.savefig(file_path + '_missed.pdf', bbox_inches='tight')
sns.catplot(
x='param_value',
y='total_discovered',
data=dataframe,
hue='agent_type',
kind='bar',
palette='muted',
height=plot_height,
aspect=aspect_ratio,
legend=False)
plt.xlabel('Dynamic factor', fontsize=LARGE_FONTSIZE)
plt.ylabel('Total discovered incidents', fontsize=LARGE_FONTSIZE)
plt.xticks(fontsize=MEDIUM_FONTSIZE)
plt.yticks(fontsize=MEDIUM_FONTSIZE)
plt.legend(fontsize=MEDIUM_FONTSIZE, title_fontsize=MEDIUM_FONTSIZE)
plt.savefig(file_path + '_discovered.pdf', bbox_inches='tight')
示例6: plot_discovered_occurred_ratio_range
# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import catplot [as 别名]
def plot_discovered_occurred_ratio_range(dataframe, file_path=''):
"""Plot the range of discovered incidents/occurred range between locations."""
plot_height = 5
aspect_ratio = 1.3
sns.set_style('whitegrid')
sns.despine()
sns.catplot(
x='param_value',
y='discovered/occurred range',
data=dataframe,
hue='agent_type',
kind='bar',
palette='muted',
height=plot_height,
aspect=aspect_ratio)
plt.xlabel('Dynamic factor', fontsize=LARGE_FONTSIZE)
plt.ylabel('Discovered/occurred range', fontsize=LARGE_FONTSIZE)
plt.xticks(fontsize=MEDIUM_FONTSIZE)
plt.yticks(fontsize=MEDIUM_FONTSIZE)
# plt.legend(fontsize=MEDIUM_FONTSIZE, title_fontsize=MEDIUM_FONTSIZE)
plt.savefig(file_path + '.pdf', bbox_inches='tight')
sns.catplot(
x='param_value',
y='discovered/occurred range weighted',
data=dataframe,
hue='agent_type',
kind='bar',
palette='muted',
height=plot_height,
aspect=aspect_ratio)
plt.xlabel('Dynamic factor', fontsize=LARGE_FONTSIZE)
plt.ylabel('Delta', fontsize=LARGE_FONTSIZE)
plt.xticks(fontsize=MEDIUM_FONTSIZE)
plt.yticks(fontsize=MEDIUM_FONTSIZE)
# plt.legend(fontsize=MEDIUM_FONTSIZE, title_fontsize=MEDIUM_FONTSIZE)
plt.savefig(file_path + '_weighted.pdf', bbox_inches='tight')
示例7: plot_discovered_occurred_ratio_locations
# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import catplot [as 别名]
def plot_discovered_occurred_ratio_locations(dataframe, file_path=''):
"""Plot the discovered incidents/occurred ratio for each location."""
plot_height = 5
aspect_ratio = 1.3
sns.despine()
sns.set(style='ticks')
sns.catplot(
x='param_value',
y='discovered/occurred',
data=dataframe,
hue='agent_type',
height=plot_height,
aspect=aspect_ratio,
s=8)
plt.xlabel('Dynamic factor', fontsize=LARGE_FONTSIZE)
plt.ylabel('Discovered/occurred', fontsize=LARGE_FONTSIZE)
plt.xticks(fontsize=MEDIUM_FONTSIZE)
plt.yticks(fontsize=MEDIUM_FONTSIZE)
# plt.legend(fontsize=MEDIUM_FONTSIZE, title_fontsize=MEDIUM_FONTSIZE)
plt.savefig(file_path + '.pdf', bbox_inches='tight')
sns.set(style='ticks')
sns.catplot(
x='param_value',
y='discovered/occurred weighted',
data=dataframe,
hue='agent_type',
height=plot_height,
aspect=aspect_ratio,
s=8)
plt.xlabel('Dynamic factor', fontsize=LARGE_FONTSIZE)
plt.ylabel('Discovered/occurred weighted', fontsize=LARGE_FONTSIZE)
plt.xticks(fontsize=MEDIUM_FONTSIZE)
plt.yticks(fontsize=MEDIUM_FONTSIZE)
# plt.legend(fontsize=MEDIUM_FONTSIZE, title_fontsize=MEDIUM_FONTSIZE)
plt.savefig(file_path + '_weighted.pdf', bbox_inches='tight')
示例8: analyze_pcap
# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import catplot [as 别名]
def analyze_pcap(rl_algos, tcp_algos, plt_name, runs, data_dir):
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import seaborn as sns
algos = rl_algos + tcp_algos
host_rtt = {}
for algo in algos:
host_rtt[algo] = process_rtt_files(data_dir, runs, algo)
pcap_df = pd.DataFrame.from_dict(host_rtt, orient='index')
pcap_df = pd.melt(pcap_df.reset_index(), id_vars='index',
var_name="Metric",
value_name="Average RTT (ms)")
pcap_df = pcap_df.rename(columns={'index': 'Algorithm'})
# Convert to milliseconds
# pcap_df = pcap_df.div(1e6)
fig = sns.catplot(x='Metric', y='Average RTT (ms)',
hue="Algorithm", data=pcap_df, kind='bar')
from itertools import cycle
hatches = cycle(["/", "-", "+", "x", '-', '+', 'x', 'O', '.'])
num_locations = len(pcap_df.Metric.unique())
for i, patch in enumerate(fig.ax.patches):
# Blue bars first, then green bars
if i % num_locations == 0:
hatch = next(hatches)
patch.set_hatch(hatch)
plt_name += "_rtt"
log.info("Saving plot %s" % plt_name)
plt.savefig(plt_name + ".png", bbox_inches='tight', pad_inches=0.05)
plt.savefig(plt_name + ".pdf", bbox_inches='tight', pad_inches=0.05)
plt.gcf().clear()
示例9: _plot_results_accuracy_per_domain
# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import catplot [as 别名]
def _plot_results_accuracy_per_domain(results_df, diff_df, save_cfg):
"""Make scatterplot + boxplot to show accuracy difference by domain.
"""
fig, axes = plt.subplots(
nrows=2, ncols=1, sharex=True,
figsize=(save_cfg['text_width'], save_cfg['text_height'] / 3),
gridspec_kw = {'height_ratios':[5, 1]})
results_df['Main domain'] = results_df['Main domain'].apply(
ut.wrap_text, max_char=20)
sns.catplot(y='Main domain', x='acc_diff', s=3, jitter=True,
data=results_df, ax=axes[0])
axes[0].set_xlabel('')
axes[0].set_ylabel('')
axes[0].axvline(0, c='k', alpha=0.2)
sns.boxplot(x='acc_diff', data=diff_df, ax=axes[1])
sns.swarmplot(x='acc_diff', data=diff_df, color="0", size=2, ax=axes[1])
axes[1].axvline(0, c='k', alpha=0.2)
axes[1].set_xlabel('Accuracy difference')
fig.subplots_adjust(wspace=0, hspace=0.02)
plt.tight_layout()
logger.info('Number of studies included in the accuracy improvement analysis: {}'.format(
results_df.shape[0]))
median = diff_df['acc_diff'].median()
iqr = diff_df['acc_diff'].quantile(.75) - diff_df['acc_diff'].quantile(.25)
logger.info('Median gain in accuracy: {:.6f}'.format(median))
logger.info('Interquartile range of the gain in accuracy: {:.6f}'.format(iqr))
best_improvement = diff_df.nlargest(3, 'acc_diff')
logger.info('Best improvement in accuracy: {}, in {}'.format(
best_improvement['acc_diff'].values[0],
best_improvement['Citation'].values[0]))
logger.info('Second best improvement in accuracy: {}, in {}'.format(
best_improvement['acc_diff'].values[1],
best_improvement['Citation'].values[1]))
logger.info('Third best improvement in accuracy: {}, in {}'.format(
best_improvement['acc_diff'].values[2],
best_improvement['Citation'].values[2]))
if save_cfg is not None:
savename = 'reported_accuracy_per_domain'
fname = os.path.join(save_cfg['savepath'], savename)
fig.savefig(fname + '.' + save_cfg['format'], **save_cfg)
return axes
示例10: visualisationDF
# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import catplot [as 别名]
def visualisationDF(df):
dataFrameInfoPrint(df)
#graph-01
# df['shapelyArea'].plot.hist(alpha=0.5)
#graph-02
# df['shapelyArea'].plot.kde()
#graph-03
# df[['shapelyLength','shapeIdx']].plot.scatter('shapelyLength','shapeIdx')
#normalize data in a range of columns
cols_to_norm=['shapeIdx', 'FRAC']
df[cols_to_norm]=df[cols_to_norm].apply(lambda x: (x - x.min()) / (x.max() - x.min()))
a='shapeIdx'
b='FRAC'
c='park_class'
#graph-04
# sns.jointplot(a,b,df,kind='hex')
#graph-05
# sns.jointplot(a, b, df, kind='kde')
#graph-06
# sns.catplot(x='park_class',y=a,data=df)
#graph-07
'''
# Initialize the figure
f, ax = plt.subplots()
sns.despine(bottom=True, left=True)
# Show each observation with a scatterplot
sns.stripplot(x=a, y=c, hue=c,data=df, dodge=True, alpha=.25, zorder=1)
# Show the conditional means
sns.pointplot(x=a, y=c, hue=c,data=df, dodge=.532, join=False, palette="dark",markers="d", scale=.75, ci=None)
# Improve the legend
handles, labels = ax.get_legend_handles_labels()
ax.legend(handles[3:], labels[3:], title=b,handletextpad=0, columnspacing=1,loc="lower right", ncol=3, frameon=True)
'''
#graph-08
# sns.catplot(x=c,y=a,data=df,kind='box')
#graph-09
# sns.catplot(x=c,y=a,data=df,kind='violin')
#graph-10
'''
f, axs = plt.subplots(1, 2, figsize=(12, 6))
# First axis
df[b].plot.hist(ax=axs[0])
# Second axis
df[b].plot.kde(ax=axs[1])
# Title
f.suptitle(b)
# Display
plt.show()
'''
#从新定义栅格投影,参考投影为vector .shp文件