本文整理汇总了Python中seaborn.boxplot方法的典型用法代码示例。如果您正苦于以下问题:Python seaborn.boxplot方法的具体用法?Python seaborn.boxplot怎么用?Python seaborn.boxplot使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类seaborn
的用法示例。
在下文中一共展示了seaborn.boxplot方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: boxplot
# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import boxplot [as 别名]
def boxplot(self, column, **kwargs):
"""
Generate boxplots for a given column in all assets.
Parameters:
- column: The name of the column to visualize.
- kwargs: Additional keyword arguments to pass down
to the plotting function.
Returns:
A matplotlib Axes object.
"""
return sns.boxplot(
x=self.group_by,
y=column,
data=self.data,
**kwargs
)
示例2: boxplot_metrics
# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import boxplot [as 别名]
def boxplot_metrics(df, eval_dir):
"""
Create summary boxplots of all geometric measures.
:param df:
:param eval_dir:
:return:
"""
boxplots_file = os.path.join(eval_dir, 'boxplots.eps')
fig, axes = plt.subplots(3, 1)
fig.set_figheight(14)
fig.set_figwidth(7)
sns.boxplot(x='struc', y='dice', hue='phase', data=df, palette="PRGn", ax=axes[0])
sns.boxplot(x='struc', y='hd', hue='phase', data=df, palette="PRGn", ax=axes[1])
sns.boxplot(x='struc', y='assd', hue='phase', data=df, palette="PRGn", ax=axes[2])
plt.savefig(boxplots_file)
plt.close()
return 0
示例3: bar_box_violin_dot_plots
# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import boxplot [as 别名]
def bar_box_violin_dot_plots(data, category_col, numeric_col, axes, file_name=None):
sns.barplot(category_col, numeric_col, data=data, ax=axes[0])
sns.boxplot(
category_col, numeric_col, data=data[data[numeric_col].notnull()], ax=axes[2]
)
sns.violinplot(
category_col,
numeric_col,
data=data,
kind="violin",
inner="quartile",
scale="count",
split=True,
ax=axes[3],
)
sns.stripplot(category_col, numeric_col, data=data, jitter=True, ax=axes[1])
sns.despine(left=True)
示例4: plot
# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import boxplot [as 别名]
def plot(params_dir):
model_dirs = [name for name in os.listdir(params_dir)
if os.path.isdir(os.path.join(params_dir, name))]
df = defaultdict(list)
for model_dir in model_dirs:
df[re.sub('_bin_scaled_mono_True_ratio', '', model_dir)] = [
dd.io.load(path)['best_epoch']['validate_objective']
for path in glob.glob(os.path.join(
params_dir, model_dir) + '/*.h5')]
df = pd.DataFrame(dict([(k, pd.Series(v)) for k, v in df.iteritems()]))
df.to_csv(os.path.basename(os.path.normpath(params_dir)))
plt.figure(figsize=(16, 4), dpi=300)
g = sns.boxplot(df)
g.set_xticklabels(df.columns, rotation=45)
plt.tight_layout()
plt.savefig('{}_errors_box_plot.png'.format(
os.path.join(IMAGES_DIRECTORY,
os.path.basename(os.path.normpath(params_dir)))))
示例5: boxplot
# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import boxplot [as 别名]
def boxplot(self, fig_width: Number, fig_height: Number = None):
"""
Creates a (horizontal) box plot comparing all single object for a given property.
:param fig_width: width of the figure in cm
:param fig_height: height of the figure in cm, if None it is calculated from the figure width using the
aesthetic ratio
"""
import seaborn as sns
import matplotlib.pyplot as plt
self.reset_plt()
if fig_height is None:
fig_height = self._height_for_width(fig_width)
self._fig = plt.figure(figsize=self._fig_size_cm_to_inch(fig_width, fig_height))
df = self.get_data_frame()
sns.boxplot(data=df, orient="h")
示例6: BoxPlot
# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import boxplot [as 别名]
def BoxPlot(self, feature):
fig, ax = plt.subplots()
ax = sns.boxplot(y=self.df[feature], ax=ax)
box = ax.artists[0]
indices = random.sample(range(len(self.SelectedColors)), 2)
colors=[self.SelectedColors[i] for i in sorted(indices)]
box.set_facecolor(colors[0])
box.set_edgecolor(colors[1])
sns.despine(offset=10, trim=True)
this_dir, this_filename = os.path.split(__file__)
OutFileName = os.path.join(this_dir, 'HTMLTemplate/dist/output/'+feature + '.png')
if platform.system() =='Linux':
OutFileName = os.path.join(this_dir, 'HTMLTemplate/dist/output/' + feature + '.png')
plt.savefig(OutFileName)
return OutFileName
示例7: BoxPlot
# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import boxplot [as 别名]
def BoxPlot(self,var):
start = time.time()
fig, ax = plt.subplots()
ax = sns.boxplot(y=self.df[var], ax=ax)
box = ax.artists[0]
indices = random.sample(range(len(self.SelectedColors)), 2)
colors=[self.SelectedColors[i] for i in sorted(indices)]
box.set_facecolor(colors[0])
box.set_edgecolor(colors[1])
sns.despine(offset=10, trim=True)
this_dir, this_filename = os.path.split(__file__)
OutFileName = os.path.join(this_dir, 'HTMLTemplate/dist/output/'+var + '.png')
plt.savefig(OutFileName)
end = time.time()
if self.debug == 'YES':
print('BoxPlot',end-start)
return OutFileName
示例8: BoxPlot
# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import boxplot [as 别名]
def BoxPlot(self, feature):
fig, ax = plt.subplots()
ax = sns.boxplot(y=self.df[feature], ax=ax)
box = ax.artists[0]
indices = random.sample(range(len(self.SelectedColors)), 2)
colors=[self.SelectedColors[i] for i in sorted(indices)]
box.set_facecolor(colors[0])
box.set_edgecolor(colors[1])
sns.despine(offset=10, trim=True)
this_dir, this_filename = os.path.split(__file__)
OutFileName = os.path.join(this_dir, 'HTMLTemplate/dist/output/'+feature + '.png')
if platform.system() == 'Linux':
out_filename = os.path.join(this_dir, 'ExploriPy/HTMLTemplate/dist/output/'+feature + '.png')
plt.savefig(OutFileName)
return OutFileName
示例9: plot_change_by_pos
# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import boxplot [as 别名]
def plot_change_by_pos(diffs_by_context,plottype='box'):
fig = plt.figure(figsize=(6,4))
changes_by_position = {'position':[],'base':[],'diff':[]}
for lab in diffs_by_context:
for context in diffs_by_context[lab]:
for entry in diffs_by_context[lab][context]:
for pos,diff in enumerate(entry[:-1]):
changes_by_position['position'].append(pos+1)
changes_by_position['base'].append(lab)
changes_by_position['diff'].append(diff)
dPos = pd.DataFrame(changes_by_position)
if plottype == 'box':
sns.boxplot(x="position", y="diff", hue="base", data=dPos, palette=[cols[base],cols[methbase]])
elif plottype == 'violin':
sns.violinplot(x="position",y="diff", hue="base", data=dPos, palette=[cols[base],cols[methbase]])
sns.despine(trim=False)
plt.xlabel('Adenine Position in 6-mer')
plt.ylabel('Measured - Expected Current (pA)')
plt.ylim([-20,20])
plt.legend(title='',loc='upper center', bbox_to_anchor=(0.5, 1.05),
ncol=3, fancybox=True)
plt.savefig('change_by_position_box.pdf',transparent=True,dpi=500, bbox_inches='tight')
示例10: plot_scores
# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import boxplot [as 别名]
def plot_scores(self):
matchScores = []
nonMatchScores = []
for i in self.bills.keys():
for j in self.bills.keys():
if (i,j) not in self.results or self.results[(i,j)]['score'] == 0:
#ignore if score zero because url is broken
pass
elif i < j and self.results[(i,j)]['match']:
matchScores.append(min(self.results[(i,j)]['score'],200))
else:
nonMatchScores.append(min(self.results[(i,j)]['score'],200))
bins = np.linspace(min(nonMatchScores + matchScores), max(nonMatchScores + matchScores), 100)
plt.hist(nonMatchScores, bins, alpha=0.5, label='Non-Matches')
plt.hist(matchScores, bins, alpha=0.5, label='Matches')
plt.legend(loc='upper right')
plt.xlabel('Alignment Score')
plt.ylabel('Number of Bill Pairs')
plt.title('Distribution of Alignment Scores')
plt.show()
#make boxplot
data_to_plot = [matchScores, nonMatchScores]
fig = plt.figure(1, figsize=(9, 6))
ax = fig.add_subplot(111)
bp = ax.boxplot(data_to_plot)
ax.set_xticklabels(['Match Scores', 'Non-Match Scores'])
fig.show()
示例11: plot_num_matches
# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import boxplot [as 别名]
def plot_num_matches(self):
matchScores = []
nonMatchScores = []
for i in self.bills.keys():
for j in self.bills.keys():
if self.scores[i,j] == 0:
#ignore if score zero because url is broken
pass
elif i < j and self.results[(i,j)]['match']:
matchScores.append(min(self.results[(i,j)]['features'][0]['num_matches'],200))
else:
nonMatchScores.append(min(self.results[(i,j)]['features'][0]['num_matches'],200))
bins = np.linspace(min(nonMatchScores + matchScores), max(nonMatchScores + matchScores), 100)
plt.hist(nonMatchScores, bins, alpha=0.5, label='Non-Matches')
plt.hist(matchScores, bins, alpha=0.5, label='Matches')
plt.legend(loc='upper right')
plt.xlabel('Alignment Score')
plt.ylabel('Number of Bill Pairs')
plt.title('Distribution of Alignment Scores')
plt.show()
#make boxplot
data_to_plot = [matchScores, nonMatchScores]
fig = plt.figure(1, figsize=(9, 6))
ax = fig.add_subplot(111)
bp = ax.boxplot(data_to_plot)
ax.set_xticklabels(['Match Scores', 'Non-Match Scores'])
fig.show()
示例12: plot_grid
# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import boxplot [as 别名]
def plot_grid(self):
self._create_grid_df()
df = self.grid_df
#make maximum possible 500
df.loc[df['score']>500,'score'] = 500
#match plot
df_match = df[(df['mismatch_score'] == -2) & (df['gap_score'] == -1)]
g = sns.FacetGrid(df_match, col="match_score")
g = g.map(sns.boxplot, "match", "score")
sns.plt.ylim(0,400)
sns.plt.show()
#mismatch plot
df_mismatch = df[(df['match_score'] == 3) & (df['gap_score'] == -1)]
g = sns.FacetGrid(df_mismatch, col="mismatch_score")
g = g.map(sns.boxplot, "match", "score")
sns.plt.ylim(0,400)
sns.plt.show()
#gap plot
df_gap = df[(df['match_score'] == 3) & (df['mismatch_score'] == -2)]
g = sns.FacetGrid(df_gap, col="gap_score")
g = g.map(sns.boxplot, "match", "score")
sns.plt.ylim(0,400)
sns.plt.show()
示例13: plot_null_feature_importance_distributions
# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import boxplot [as 别名]
def plot_null_feature_importance_distributions(null_distributions: Mapping[int, List[float]], ax=None) -> None:
if ax is None:
_, ax = plt.subplots(1, 1)
df = pd.DataFrame(null_distributions)
df = pd.DataFrame(df.unstack()).reset_index().drop("level_1", axis=1)
df.columns = ["variable", "p"]
sns.boxplot(x="variable", y="p", data=df, ax=ax)
ax.set_title("Null Feature Importance Distribution")
return ax
示例14: visualize_feature_boxplot
# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import boxplot [as 别名]
def visualize_feature_boxplot(X,y,selected_feature,features):
"""
Visualize the boxplot of a feature
Keyword arguments:
X -- The feature vectors
y -- The target vector
selected_feature -- The desired feature to obtain the histogram
features -- Vector of feature names (X1 to XN)
"""
#create data
joint_data=np.column_stack((X,y))
column_names=features
#create dataframe
df=pd.DataFrame(data=joint_data,columns=column_names)
# palette = sea.hls_palette()
splot=sea.boxplot(data=df,x='Y',y=selected_feature,hue="Y",palette="husl")
plt.title('BoxPlot Distribution of '+selected_feature)
#save fig
output_dir = "img"
save_fig(output_dir,'{}/{}_boxplot.png'.format(output_dir,selected_feature))
# plt.show()
示例15: accuracy_results_plot
# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import boxplot [as 别名]
def accuracy_results_plot(data_path):
data = pd.read_csv(data_path,index_col=0)
sns.boxplot(data=data)
sns.set(rc={"figure.figsize": (9, 6)})
ax = sns.boxplot( data=data)
ax.set_xlabel(x_label,fontsize=15)
ax.set_ylabel(y_label,fontsize=15)
plt.show()