当前位置: 首页>>代码示例>>Python>>正文


Python seaborn.axes_style方法代码示例

本文整理汇总了Python中seaborn.axes_style方法的典型用法代码示例。如果您正苦于以下问题:Python seaborn.axes_style方法的具体用法?Python seaborn.axes_style怎么用?Python seaborn.axes_style使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在seaborn的用法示例。


在下文中一共展示了seaborn.axes_style方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: joint_plot

# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import axes_style [as 别名]
def joint_plot(x, y, xlabel=None,
               ylabel=None, xlim=None, ylim=None,
               loc="best", color='#0485d1',
               size=8, markersize=50, kind="kde",
               scatter_color="r"):
    with sns.axes_style("darkgrid"):
        if xlabel and ylabel:
            g = SubsampleJointGrid(xlabel, ylabel,
                    data=DataFrame(data={xlabel: x, ylabel: y}),
                    space=0.1, ratio=2, size=size, xlim=xlim, ylim=ylim)
        else:
            g = SubsampleJointGrid(x, y, size=size,
                    space=0.1, ratio=2, xlim=xlim, ylim=ylim)
        g.plot_joint(sns.kdeplot, shade=True, cmap="Blues")
        g.plot_sub_joint(plt.scatter, 1000, s=20, c=scatter_color, alpha=0.3)
        g.plot_marginals(sns.distplot, kde=False, rug=False)
        g.annotate(ss.pearsonr, fontsize=25, template="{stat} = {val:.2g}\np = {p:.2g}")
        g.ax_joint.set_yticklabels(g.ax_joint.get_yticks())
        g.ax_joint.set_xticklabels(g.ax_joint.get_xticks())
    return g 
开发者ID:Noahs-ARK,项目名称:idea_relations,代码行数:22,代码来源:plot_functions.py

示例2: customize

# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import axes_style [as 别名]
def customize(func):
    """
    修饰器,设置输出图像内容与风格
    """

    @wraps(func)
    def call_w_context(*args, **kwargs):
        set_context = kwargs.pop("set_context", True)
        if set_context:
            color_palette = sns.color_palette("colorblind")
            with plotting_context(), axes_style(), color_palette:
                sns.despine(left=True)
                return func(*args, **kwargs)
        else:
            return func(*args, **kwargs)

    return call_w_context 
开发者ID:QUANTAXIS,项目名称:QUANTAXIS,代码行数:19,代码来源:plotting_utils.py

示例3: axes_style

# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import axes_style [as 别名]
def axes_style(style: str = "darkgrid", rc: dict = None):
    """
    创建默认轴域风格

    参数
    ---
    :param style: seaborn 样式
    :param rc: dict 配置标签
    """
    if rc is None:
        rc = {}

    rc_default = {}

    for name, val in rc_default.items():
        rc.set_default(name, val)

    return sns.axes_style(style=style, rc=rc) 
开发者ID:QUANTAXIS,项目名称:QUANTAXIS,代码行数:20,代码来源:plotting_utils.py

示例4: plot_embedding

# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import axes_style [as 别名]
def plot_embedding(embed:OrderedDict, feat:str, savename:Optional[str]=None, settings:PlotSettings=PlotSettings()) -> None:
    r'''
    Visualise weights in provided categorical entity-embedding matrix

    Arguments:
        embed: state_dict of trained nn.Embedding
        feat: name of feature embedded
        savename: Optional name of file to which to save the plot of feature importances
        settings: :class:`~lumin.plotting.plot_settings.PlotSettings` class to control figure appearance
    '''

    with sns.axes_style(**settings.style):
        plt.figure(figsize=(settings.w_small, settings.h_small))
        sns.heatmap(to_np(embed['weight']), annot=True, fmt='.1f', linewidths=.5, cmap=settings.div_palette, annot_kws={'fontsize':settings.leg_sz})
        plt.xlabel("Embedding", fontsize=settings.lbl_sz, color=settings.lbl_col)
        plt.ylabel(feat, fontsize=settings.lbl_sz, color=settings.lbl_col)
        plt.xticks(fontsize=settings.tk_sz, color=settings.tk_col)
        plt.yticks(fontsize=settings.tk_sz, color=settings.tk_col)
        plt.title(settings.title, fontsize=settings.title_sz, color=settings.title_col, loc=settings.title_loc)
        if savename is not None: plt.savefig(settings.savepath/f'{savename}{settings.format}', bbox_inches='tight')
        plt.show() 
开发者ID:GilesStrong,项目名称:lumin,代码行数:23,代码来源:interpretation.py

示例5: plot

# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import axes_style [as 别名]
def plot(self):
        r'''
        Plots the history of the lr and momentum evolution as a function of iterations
        '''

        with sns.axes_style(self.plot_settings.style), sns.color_palette(self.plot_settings.cat_palette):
            fig, axs = plt.subplots(2, 1, figsize=(self.plot_settings.w_mid, self.plot_settings.h_mid))
            axs[1].set_xlabel("Iterations", fontsize=self.plot_settings.lbl_sz, color=self.plot_settings.lbl_col)
            axs[0].set_ylabel("Learning Rate", fontsize=self.plot_settings.lbl_sz, color=self.plot_settings.lbl_col)
            axs[1].set_ylabel("Momentum", fontsize=self.plot_settings.lbl_sz, color=self.plot_settings.lbl_col)
            axs[0].plot(range(len(self.hist['lr'])), self.hist['lr'])
            axs[1].plot(range(len(self.hist['mom'])), self.hist['mom'])
            for ax in axs:
                ax.tick_params(axis='x', labelsize=self.plot_settings.tk_sz, labelcolor=self.plot_settings.tk_col)
                ax.tick_params(axis='y', labelsize=self.plot_settings.tk_sz, labelcolor=self.plot_settings.tk_col)
            plt.show() 
开发者ID:GilesStrong,项目名称:lumin,代码行数:18,代码来源:cyclic_callbacks.py

示例6: gauss_2d

# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import axes_style [as 别名]
def gauss_2d(nsamples=1000):
    """
    Another simple test plot
    1d gaussian sampled from each sampler visualized as a joint 2d gaussian
    """
    gaussian = TestGaussian(ndims=1)
    control = HMCBase(distribution=gaussian)
    experimental = MarkovJumpHMC(distribution=gaussian, resample=False)


    with sns.axes_style("white"):
        sns.jointplot(
            control.sample(nsamples)[0],
            experimental.sample(nsamples)[0],
            kind='hex',
            stat_func=None) 
开发者ID:rueberger,项目名称:MJHMC,代码行数:18,代码来源:plotting.py

示例7: customize

# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import axes_style [as 别名]
def customize(func):

    @wraps(func)
    def call_w_context(*args, **kwargs):

        if not PlotConfig.FONT_SETTED:
            _use_chinese(True)

        set_context = kwargs.pop('set_context', True)
        if set_context:
            with plotting_context(), axes_style():
                sns.despine(left=True)
                return func(*args, **kwargs)
        else:
            return func(*args, **kwargs)

    return call_w_context 
开发者ID:JoinQuant,项目名称:jqfactor_analyzer,代码行数:19,代码来源:plot_utils.py

示例8: start_plotting

# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import axes_style [as 别名]
def start_plotting(fig_size, fig_pos, style="white", rc=None, despine=False):
    with sns.axes_style(style, rc):
        fig = plt.figure(figsize=fig_size)
        if not fig_pos:
            ax = fig.add_subplot(111)
        else:
            ax = fig.add_axes(fig_pos)
    if despine:
        sns.despine(left=True)
    return fig, ax 
开发者ID:Noahs-ARK,项目名称:idea_relations,代码行数:12,代码来源:plot_functions.py

示例9: plot_importance

# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import axes_style [as 别名]
def plot_importance(df:pd.DataFrame, feat_name:str='Feature', imp_name:str='Importance',  unc_name:str='Uncertainty', threshold:Optional[float]=None,
                    x_lbl:str='Importance via feature permutation', savename:Optional[str]=None, settings:PlotSettings=PlotSettings()) -> None:
    r'''
    Plot feature importances as computted via `get_nn_feat_importance`, `get_ensemble_feat_importance`, or `rf_rank_features`

    Arguments:
        df: DataFrame containing columns of features, importances and, optionally, uncertainties
        feat_name: column name for features
        imp_name: column name for importances
        unc_name: column name for uncertainties (if present)
        threshold: if set, will draw a line at the threshold hold used for feature importance
        x_lbl: label to put on the x-axis
        savename: Optional name of file to which to save the plot of feature importances
        settings: :class:`~lumin.plotting.plot_settings.PlotSettings` class to control figure appearance
    '''

    with sns.axes_style(**settings.style), sns.color_palette(settings.cat_palette) as palette:
        fig, ax = plt.subplots(figsize=(settings.w_large, (0.75)*settings.lbl_sz))
        xerr = None if unc_name not in df else 'Uncertainty'
        df.plot(feat_name, imp_name, 'barh', ax=ax, legend=False, xerr=xerr, error_kw={'elinewidth': 3}, color=palette[0])
        if threshold is not None:
            ax.axvline(x=threshold, label=f'Threshold {threshold}', color=palette[1], linestyle='--', linewidth=3)
            plt.legend(loc=settings.leg_loc, fontsize=settings.leg_sz)
        ax.set_xlabel(x_lbl, fontsize=settings.lbl_sz, color=settings.lbl_col)
        ax.set_ylabel('Feature', fontsize=settings.lbl_sz, color=settings.lbl_col)
        plt.xticks(fontsize=settings.tk_sz, color=settings.tk_col)
        plt.yticks(fontsize=settings.tk_sz, color=settings.tk_col)
        if savename is not None: plt.savefig(settings.savepath/f'{savename}{settings.format}')
        plt.show() 
开发者ID:GilesStrong,项目名称:lumin,代码行数:31,代码来源:interpretation.py

示例10: plot_rank_order_dendrogram

# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import axes_style [as 别名]
def plot_rank_order_dendrogram(df:pd.DataFrame, threshold:float=0.8, savename:Optional[str]=None, settings:PlotSettings=PlotSettings()) \
        -> Dict[str,Union[List[str],float]]:
    r'''
    Plots a dendrogram of features in df clustered via Spearman's rank correlation coefficient.
    Also returns a sets of features with correlation coefficients greater than the threshold

    Arguments:
        df: Pandas DataFrame containing data
        threshold: Threshold on correlation coefficient
        savename: Optional name of file to which to save the plot of feature importances
        settings: :class:`~lumin.plotting.plot_settings.PlotSettings` class to control figure appearance

    Returns:
        Dict of sets of features with correlation coefficients greater than the threshold and cluster distance
    '''

    corr = np.round(scipy.stats.spearmanr(df).correlation, 4)
    corr_condensed = hc.distance.squareform(1-np.abs(corr))  # Abs because negtaive of a feature is a trvial transformation: information unaffected
    z = hc.linkage(corr_condensed, method='average', optimal_ordering=True)

    with sns.axes_style('white'), sns.color_palette(settings.cat_palette):
        plt.figure(figsize=(settings.w_large, (0.5*len(df.columns))))
        hc.dendrogram(z, labels=df.columns, orientation='left', leaf_font_size=settings.lbl_sz, color_threshold=1-threshold)
        plt.xlabel("Distance (1 - |Spearman's Rank Correlation Coefficient|)", fontsize=settings.lbl_sz, color=settings.lbl_col)
        plt.xticks(fontsize=settings.tk_sz, color=settings.tk_col)
        if savename is not None: plt.savefig(settings.savepath/f'{savename}{settings.format}', bbox_inches='tight')
        plt.show()

    feats = df.columns
    sets = {}
    for i, merge in enumerate(z):
        if merge[2] > 1-threshold: continue
        if merge[0] <= len(z): a = [feats[int(merge[0])]]
        else:                  a = sets.pop(int(merge[0]))['children']
        if merge[1] <= len(z): b = [feats[int(merge[1])]]
        else:                  b = sets.pop(int(merge[1]))['children']
        sets[1 + i + len(z)] = {'children': [*a, *b], 'distance': merge[2]}
    return sets 
开发者ID:GilesStrong,项目名称:lumin,代码行数:40,代码来源:data_viewing.py

示例11: plot_binary_class_pred

# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import axes_style [as 别名]
def plot_binary_class_pred(df:pd.DataFrame, pred_name:str='pred', targ_name:str='gen_target', wgt_name:str=None, wgt_scale:float=1,
                           log_y:bool=False, lim_x:Tuple[float,float]=(0,1), density=True, 
                           savename:Optional[str]=None, settings:PlotSettings=PlotSettings()) -> None:
    r'''
    Basic plotter for prediction distribution in a binary classification problem.
    Note that labels are set using the settings.targ2class dictionary, which by default is {0: 'Background', 1: 'Signal'}.

    Arguments:
        df: DataFrame with targets and predictions
        pred_name: name of column to use as predictions
        targ_name: name of column to use as targets
        wgt_name: optional name of column to use as sample weights
        wgt_scale: applies a global multiplicative rescaling to sample weights. Default 1 = no rescaling
        log_y: whether to use a log scale for the y-axis
        lim_x: limit for plotting on the x-axis
        density: whether to normalise each distribution to one, or keep set to sum of weights / datapoints
        savename: Optional name of file to which to save the plot of feature importances
        settings: :class:`~lumin.plotting.plot_settings.PlotSettings` class to control figure appearance
    '''

    with sns.axes_style(**settings.style), sns.color_palette(settings.cat_palette):
        plt.figure(figsize=(settings.w_mid, settings.h_mid))
        for targ in sorted(set(df[targ_name])):
            cut = df[targ_name] == targ
            hist_kws = {} if wgt_name is None else {'weights': wgt_scale*df.loc[cut, wgt_name]}
            sns.distplot(df.loc[cut, pred_name], label=settings.targ2class[targ], hist_kws=hist_kws, norm_hist=density, kde=False)
        plt.legend(loc=settings.leg_loc, fontsize=settings.leg_sz)
        plt.xlabel("Class prediction", fontsize=settings.lbl_sz, color=settings.lbl_col)
        plt.xlim(lim_x)
        if density:             plt.ylabel(r"$\frac{1}{N}\ \frac{dN}{dp}$", fontsize=settings.lbl_sz, color=settings.lbl_col)
        elif wgt_scale != 1:    plt.ylabel(str(wgt_scale) + r"$\times\frac{dN}{dp}$", fontsize=settings.lbl_sz, color=settings.lbl_col)
        else:                   plt.ylabel(r"$\frac{dN}{dp}$", fontsize=settings.lbl_sz, color=settings.lbl_col)
        if log_y:
            plt.yscale('log', nonposy='clip')
            plt.grid(True, which="both")
        plt.xticks(fontsize=settings.tk_sz, color=settings.tk_col)
        plt.yticks(fontsize=settings.tk_sz, color=settings.tk_col)
        plt.title(settings.title, fontsize=settings.title_sz, color=settings.title_col, loc=settings.title_loc)
        if savename is not None: plt.savefig(settings.savepath/f'{savename}{settings.format}', bbox_inches='tight')
        plt.show() 
开发者ID:GilesStrong,项目名称:lumin,代码行数:42,代码来源:results.py

示例12: plot_train_history

# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import axes_style [as 别名]
def plot_train_history(histories:List[Dict[str,List[float]]], savename:Optional[str]=None, ignore_trn=True, settings:PlotSettings=PlotSettings(),
                       show:bool=True) -> None:
    r'''
    Plot histories object returned by :meth:`~lumin.nn.training.fold_train.fold_train_ensemble` showing the loss evolution over time per model trained.

    Arguments:
        histories: list of dictionaries mapping loss type to values at each (sub)-epoch
        savename: Optional name of file to which to save the plot of feature importances
        ignore_trn: whether to ignore training loss
        settings: :class:`~lumin.plotting.plot_settings.PlotSettings` class to control figure appearance
        show: whether or not to show the plot, or just save it
    '''
    with sns.axes_style(**settings.style), sns.color_palette(settings.cat_palette) as palette:
        plt.figure(figsize=(settings.w_mid, settings.h_mid))
        for i, history in enumerate(histories):
            if i == 0:
                for j, l in enumerate(history):
                    if not('trn' in l and ignore_trn): plt.plot(history[l], color=palette[j], label=_lookup_name(l))
            else:
                for j, l in enumerate(history):
                    if not('trn' in l and ignore_trn): plt.plot(history[l], color=palette[j])

        plt.legend(loc=settings.leg_loc, fontsize=settings.leg_sz)
        plt.xticks(fontsize=settings.tk_sz, color=settings.tk_col)
        plt.yticks(fontsize=settings.tk_sz, color=settings.tk_col)
        plt.xlabel("Epoch", fontsize=settings.lbl_sz, color=settings.lbl_col)
        plt.ylabel("Loss", fontsize=settings.lbl_sz, color=settings.lbl_col)
        if savename is not None: plt.savefig(f'{savename}{settings.format}', bbox_inches='tight')
        if show: plt.show() 
开发者ID:GilesStrong,项目名称:lumin,代码行数:31,代码来源:training.py

示例13: reset

# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import axes_style [as 别名]
def reset(self) -> None:
        r'''
        Resets/initialises the logger's values and plots, and produces a placeholder plot. Should be called prior to `update_vals` or `update_plot`.
        '''

        self.loss_vals, self.vel_vals, self.gen_vals = [[] for _ in self.loss_names], [[] for _ in self.loss_names], [[] for _ in range(len(self.loss_names)-1)]
        self.mean_losses = [None for _ in self.loss_names]
        self.subepochs, self.epochs = [0], [0]
        self.count,self.log = 1,False

        with sns.axes_style(**self.settings.style):
            if self.extra_detail:
                self.fig = plt.figure(figsize=(self.settings.w_mid, self.settings.h_mid), constrained_layout=True)
                gs = self.fig.add_gridspec(2, 3)
                self.loss_ax = self.fig.add_subplot(gs[:,:-1])
                self.vel_ax = self.fig.add_subplot(gs[:1,2:])
                self.gen_ax  = self.fig.add_subplot(gs[1:2,2:])
                for ax in [self.loss_ax, self.vel_ax, self.gen_ax]:
                    ax.tick_params(axis='x', labelsize=0.8*self.settings.tk_sz, labelcolor=self.settings.tk_col)
                    ax.tick_params(axis='y', labelsize=0.8*self.settings.tk_sz, labelcolor=self.settings.tk_col)
                self.loss_ax.set_xlabel('Sub-Epoch', fontsize=0.8*self.settings.lbl_sz, color=self.settings.lbl_col)
                self.loss_ax.set_ylabel('Loss', fontsize=0.8*self.settings.lbl_sz, color=self.settings.lbl_col)
                self.vel_ax.set_ylabel(r'$\Delta \bar{L}\ /$ Epoch', fontsize=0.8*self.settings.lbl_sz, color=self.settings.lbl_col)
                self.gen_ax.set_xlabel('Epoch', fontsize=0.8*self.settings.lbl_sz, color=self.settings.lbl_col)
                self.gen_ax.set_ylabel('Validation / Train', fontsize=0.8*self.settings.lbl_sz, color=self.settings.lbl_col)
                self.display = display(self.fig, display_id=True)
            else:
                self.fig, self.loss_ax = plt.subplots(1, figsize=(self.settings.w_mid, self.settings.h_mid))
                self.loss_ax.tick_params(axis='x', labelsize=0.8*self.settings.tk_sz, labelcolor=self.settings.tk_col)
                self.loss_ax.tick_params(axis='y', labelsize=0.8*self.settings.tk_sz, labelcolor=self.settings.tk_col)
                self.loss_ax.set_xlabel('Sub-Epoch', fontsize=0.8*self.settings.lbl_sz, color=self.settings.lbl_col)
                self.loss_ax.set_ylabel('Loss', fontsize=0.8*self.settings.lbl_sz, color=self.settings.lbl_col)
                self.display = display(self.loss_ax.figure, display_id=True) 
开发者ID:GilesStrong,项目名称:lumin,代码行数:35,代码来源:metric_logger.py

示例14: plot_lr

# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import axes_style [as 别名]
def plot_lr(self) -> None:
        r'''
        Plot the LR as a function of iterations.
        '''

        with sns.axes_style(self.plot_settings.style), sns.color_palette(self.plot_settings.cat_palette):
            plt.figure(figsize=(self.plot_settings.h_small, self.plot_settings.h_small))
            plt.plot(range(len(self.history['lr'])), self.history['lr'])
            plt.xticks(fontsize=self.plot_settings.tk_sz, color=self.plot_settings.tk_col)
            plt.yticks(fontsize=self.plot_settings.tk_sz, color=self.plot_settings.tk_col)
            plt.ylabel("Learning rate", fontsize=self.plot_settings.lbl_sz, color=self.plot_settings.lbl_col)
            plt.xlabel("Iterations", fontsize=self.plot_settings.lbl_sz, color=self.plot_settings.lbl_col)
            plt.show() 
开发者ID:GilesStrong,项目名称:lumin,代码行数:15,代码来源:opt_callbacks.py

示例15: main

# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import axes_style [as 别名]
def main(args):
    distance_confidence_info = pickle.load(open(osp.join(args.result_path, "distance_confidence_info.pkl"), "rb"))
    margin_confidence_info = pickle.load(open(osp.join(args.result_path, "margin_confidence_info.pkl"), "rb"))
    random_info = pickle.load(open(osp.join(args.result_path, "random_info.pkl"), "rb"))
    distance_confidence_info['CMCs'] = [cmc * 100 for cmc in distance_confidence_info['CMCs']]
    margin_confidence_info['CMCs'] = [cmc * 100 for cmc in margin_confidence_info['CMCs']]
    random_info['CMCs'] = [cmc * 100 for cmc in random_info['CMCs']]

    with sns.axes_style("white"):
        fig = plt.figure(figsize=(6, 4.5))
        ax  = fig.add_subplot(111)
        ax.plot(random_info['resulted_budgets'], random_info['CMCs'], marker='.', linewidth=2.5, markersize=0, label="DaRe(R)+RE (random)", color=flatui[0])
        ax.plot(distance_confidence_info['resulted_budgets'], distance_confidence_info['CMCs'], marker='*', linewidth=2.5, markersize=0, label="DaRe(R)+RE (distance)", color=flatui[1])
        ax.plot(margin_confidence_info['resulted_budgets'], margin_confidence_info['CMCs'], marker='*', linewidth=2.5, markersize=0, label="DaRe(R)+RE (margin)", color=flatui[2])

        ax.scatter(SVDNet_R_RE[0], SVDNet_R_RE[1], marker='*', s=150, label="SVDNet(R)+RE", color=flatui[3])
        ax.scatter(IDE_R_KISSME[0], IDE_R_KISSME[1], marker='h', s=100, label="IDE(R)+KISSME", color=flatui[4])
        ax.scatter(IDE_C_KISSME[0], IDE_C_KISSME[1], marker='o', s=100, label="IDE(C)+KISSME", color=flatui[5])
        ax.scatter(TriNet_R[0], TriNet_R[1], marker='D', s=60, label="TriNet(R)", color=flatui[6])
        ax.scatter(SVDNet_C[0], SVDNet_C[1], marker='p', s=100, label="SVDNet(C)", color=flatui[7])
        plt.xlabel("Average Budget (in MUL-ADD)", size=15)
        plt.ylabel("CMC Rank 1 Accuracy (\%)", size=15)
        handles, labels = ax.get_legend_handles_labels()
        label_order = ['TriNet(R)', 'SVDNet(C)', 'SVDNet(R)+RE', 'IDE(R)+KISSME', 'IDE(C)+KISSME', 'DaRe(R)+RE (random)', 'DaRe(R)+RE (distance)', 'DaRe(R)+RE (margin)']
        new_handles = []
        for l in label_order:
            for i in range(len(labels)):
                if labels[i] == l:
                    new_handles.append(handles[i])
        ax.legend(new_handles, label_order, loc='lower right')
        plt.grid(linestyle='dotted')
        plt.tight_layout(pad=1, w_pad=1, h_pad=1)
        plt.xlim(3e8, 4.5e9)
        plt.ylim(55, 95)
        plt.savefig(args.figname + ".pdf", bbox_inches='tight')
        plt.close() 
开发者ID:mileyan,项目名称:DARENet,代码行数:38,代码来源:budgeted_stream_plot.py


注:本文中的seaborn.axes_style方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。