当前位置: 首页>>代码示例>>Python>>正文


Python seaborn.FacetGrid方法代码示例

本文整理汇总了Python中seaborn.FacetGrid方法的典型用法代码示例。如果您正苦于以下问题:Python seaborn.FacetGrid方法的具体用法?Python seaborn.FacetGrid怎么用?Python seaborn.FacetGrid使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在seaborn的用法示例。


在下文中一共展示了seaborn.FacetGrid方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_probplot_with_FacetGrid_with_markers

# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import FacetGrid [as 别名]
def test_probplot_with_FacetGrid_with_markers(usemarkers):
    iris = seaborn.load_dataset("iris")

    hue_kws = None
    species = sorted(iris['species'].unique())
    markers = ['o', 'o', 'o']
    if usemarkers:
        markers = ['o', 's', '^']
        hue_kws = {'marker': markers}

    fg = (
        seaborn.FacetGrid(data=iris, hue='species', hue_kws=hue_kws)
            .map(viz.probplot, 'sepal_length')
            .set_axis_labels(x_var='Probability', y_var='Sepal Length')
            .add_legend()
    )

    _lines = filter(lambda x: isinstance(x, matplotlib.lines.Line2D), fg.ax.get_children())
    result_markers = {
        l.get_label(): l.get_marker()
        for l in _lines
    }
    expected_markers = dict(zip(species, markers))
    assert expected_markers == result_markers 
开发者ID:matplotlib,项目名称:mpl-probscale,代码行数:26,代码来源:test_viz.py

示例2: plot_lc

# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import FacetGrid [as 别名]
def plot_lc(lc, metrics=None, outputs=False):
    lc = pd.melt(lc, id_vars=['split', 'epoch'], var_name='output')
    if metrics:
        if not isinstance(metrics, list):
            metrics = [metrics]
        tmp = '(%s)' % ('|'.join(metrics))
        lc = lc.loc[lc.output.str.contains(tmp)]
    metrics = lc.output[~lc.output.str.contains('_')].unique()
    lc['metric'] = ''

    for metric in metrics:
        lc.loc[lc.output.str.contains(metric), 'metric'] = metric
        lc.loc[lc.output == metric, 'output'] = 'mean'
        lc.output = lc.output.str.replace('_%s' % metric, '')
        lc.output = lc.output.str.replace('cpg_', '')

    if outputs:
        lc = lc.loc[lc.output != 'mean']
    else:
        lc = lc.loc[lc.output == 'mean']

    grid = sns.FacetGrid(lc, col='split', row='metric', hue='output',
                         sharey=False, size=3, aspect=1.2, legend_out=True)
    grid.map(mpl.pyplot.plot, 'epoch', 'value', linewidth=2)
    grid.set(ylabel='')
    grid.add_legend()
    return grid 
开发者ID:cangermueller,项目名称:deepcpg,代码行数:29,代码来源:dcpg_train_viz.py

示例3: test_plot_rm_corr

# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import FacetGrid [as 别名]
def test_plot_rm_corr(self):
        """Test plot_shift()."""
        df = read_dataset('rm_corr')
        g = plot_rm_corr(data=df, x='pH', y='PacO2', subject='Subject')
        g = plot_rm_corr(data=df, x='pH', y='PacO2', subject='Subject',
                         legend=False)
        assert isinstance(g, sns.FacetGrid)
        plt.close('all') 
开发者ID:raphaelvallat,项目名称:pingouin,代码行数:10,代码来源:test_plotting.py

示例4: plot_grid

# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import FacetGrid [as 别名]
def plot_grid(self):

        self._create_grid_df()

        df = self.grid_df
        #make maximum possible 500
        df.loc[df['score']>500,'score'] = 500

        #match plot
        df_match = df[(df['mismatch_score'] == -2) & (df['gap_score'] == -1)]

        g = sns.FacetGrid(df_match, col="match_score")
        g = g.map(sns.boxplot, "match", "score")
        sns.plt.ylim(0,400)
        sns.plt.show()

        #mismatch plot
        df_mismatch = df[(df['match_score'] == 3) & (df['gap_score'] == -1)]

        g = sns.FacetGrid(df_mismatch, col="mismatch_score")
        g = g.map(sns.boxplot, "match", "score")
        sns.plt.ylim(0,400)
        sns.plt.show()

        #gap plot
        df_gap = df[(df['match_score'] == 3) & (df['mismatch_score'] == -2)]

        g = sns.FacetGrid(df_gap, col="gap_score")
        g = g.map(sns.boxplot, "match", "score")
        sns.plt.ylim(0,400)
        sns.plt.show() 
开发者ID:dssg,项目名称:policy_diffusion,代码行数:33,代码来源:alignment_evaluation.py

示例5: plot_llk

# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import FacetGrid [as 别名]
def plot_llk(train_elbo, test_elbo):
    import matplotlib.pyplot as plt
    import scipy as sp
    import seaborn as sns
    import pandas as pd
    plt.figure(figsize=(30, 10))
    sns.set_style("whitegrid")
    data = np.concatenate([np.arange(len(test_elbo))[:, sp.newaxis], -test_elbo[:, sp.newaxis]], axis=1)
    df = pd.DataFrame(data=data, columns=['Training Epoch', 'Test ELBO'])
    g = sns.FacetGrid(df, size=10, aspect=1.5)
    g.map(plt.scatter, "Training Epoch", "Test ELBO")
    g.map(plt.plot, "Training Epoch", "Test ELBO")
    plt.savefig(str(Path(result_dir, 'test_elbo_vae.png')))
    plt.close('all') 
开发者ID:jinserk,项目名称:pytorch-asr,代码行数:16,代码来源:plot.py

示例6: plot

# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import FacetGrid [as 别名]
def plot(data, column, column_order, ymax):
    g = sns.FacetGrid(
        data,
        col=column,
        col_order = column_order,
        sharex=False,
        size = 3.5,
        aspect = .7
    )

    g.map(
        sns.barplot,
        "model", "GFLOP/s", "batch",
        hue_order = list(set(data['batch'])).sort(),
        order = list(set(data['batch'])).sort()
    )

    if ymax == 0:
        ymax = 1
    else:
        plt.yticks(np.arange(0, ymax + (ymax * .1), ymax/10))

    axes = np.array(g.axes.flat)
    #hue_start = random.random()
    for ax in axes:
        #ax.hlines(.0003, -0.5, 0.5, linestyle='--', linewidth=1, color=getColor(hue_start, .6, .9))
        ax.set_ylim(0, ymax)

    return plt.gcf(), axes 
开发者ID:plaidml,项目名称:plaidbench,代码行数:31,代码来源:plaidplotter.py

示例7: errorplot

# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import FacetGrid [as 别名]
def errorplot(x, y, minconf, maxconf, **kwargs):
    '''
    e.g.
    g = sns.FacetGrid(attr, col='run', hue='subj_pos', col_wrap=5)
    g = g.map(errorplot, 'n_diff_intervening', 'errorprob',
        'minconf', 'maxconf').add_legend()
    '''
    plt.errorbar(x, y, yerr=[y - minconf, maxconf - y], fmt='o-', **kwargs) 
开发者ID:TalLinzen,项目名称:rnn_agreement,代码行数:10,代码来源:plotting.py

示例8: plot_stats

# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import FacetGrid [as 别名]
def plot_stats(stats):
    stats = stats.sort_values('frac_obs', ascending=False)
    stats = pd.melt(stats, id_vars=['output'], var_name='metric')
    #  stats = stats.loc[stats.metric.isin(['frac_obs', 'frac_one'])]
    #  stats.metric = stats.metric.str.replace('frac_obs', 'cov')
    #  stats.metric = stats.metric.str.replace('frac_one', 'met')
    grid = sns.FacetGrid(data=stats, col='metric', sharex=False)
    grid.map(sns.barplot, 'value', 'output')
    for ax in grid.axes.ravel():
        ax.set(xlabel='', ylabel='')
    return grid 
开发者ID:cangermueller,项目名称:deepcpg,代码行数:13,代码来源:dcpg_data_stats.py

示例9: _plot_surface_points

# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import FacetGrid [as 别名]
def _plot_surface_points(self, x, y, series_to_plot_i, aspect, extent, kwargs):
        if series_to_plot_i.shape[0] != 0:
            # size = fig.get_size_inches() * fig.dpi
            # print(size)
            # print(aspect)
            try:
                p = sns.FacetGrid(series_to_plot_i, hue="surface",
                                  palette=self._color_lot,
                                  ylim=[extent[2], extent[3]],
                                  xlim=[extent[0], extent[1]],
                                  legend_out=False,
                                  aspect=aspect,
                                  height=6)
            except KeyError:  # for kriging dataframes
                p = sns.FacetGrid(series_to_plot_i, hue=None,
                                  palette='k',
                                  ylim=[extent[2], extent[3]],
                                  xlim=[extent[0], extent[1]],
                                  legend_out=False,
                                  aspect=aspect,
                                  height=6)

            p.map(plt.scatter, x, y,
                  **kwargs['scatter_kws'],
                  zorder=10)
        else:
            self._show_legend = True 
开发者ID:cgre-aachen,项目名称:gempy,代码行数:29,代码来源:_visualization_2d.py

示例10: _plot_orientations

# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import FacetGrid [as 别名]
def _plot_orientations(self, x, y, Gx, Gy, series_to_plot_f, min_axis, extent, p, aspect=None, ax=None):
        if series_to_plot_f.shape[0] != 0:
            # print('hello')
            if p is False:
                # size = fig.get_size_inches() * fig.dpi
                # print('before plot orient', size)
                surflist = list(series_to_plot_f['surface'].unique())
                for surface in surflist:
                    to_plot = series_to_plot_f[series_to_plot_f['surface'] == surface]
                    plt.quiver(to_plot[x], to_plot[y],
                               to_plot[Gx], to_plot[Gy],
                               pivot="tail", scale_units=min_axis, scale=30, color=self._color_lot[surface],
                               edgecolor='k', headwidth=8, linewidths=1)
                    # ax.Axes.set_ylim([extent[2], extent[3]])
                    # ax.Axes.set_xlim([extent[0], extent[1]])
                # fig = plt.gcf()
                # fig.set_size_inches(20,10)
                # if aspect is not None:
                # ax = plt.gca()
                # ax.set_aspect(aspect)

            else:
                p = sns.FacetGrid(series_to_plot_f, hue="surface",
                                  palette=self._color_lot,
                                  ylim=[extent[2], extent[3]],
                                  xlim=[extent[0], extent[1]],
                                  legend_out=False,
                                  aspect=aspect,
                                  height=6)
                p.map(plt.quiver, x, y, Gx, Gy, pivot="tail", scale_units=min_axis, scale=10, edgecolor='k',
                      headwidth=4, linewidths=1)
        else:
            # print('no orient')
            pass

        # size = fig.get_size_inches() * fig.dpi
        # print('after plot_orientations', size) 
开发者ID:cgre-aachen,项目名称:gempy,代码行数:39,代码来源:_visualization_2d.py

示例11: plot_facet_grid

# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import FacetGrid [as 别名]
def plot_facet_grid(df, target, frow, fcol, tag='eda', directory=None):
    r"""Plot a Seaborn faceted histogram grid.

    Parameters
    ----------
    df : pandas.DataFrame
        The dataframe containing the features.
    target : str
        The target variable for contrast.
    frow : list of str
        Feature names for the row elements of the grid.
    fcol : list of str
        Feature names for the column elements of the grid.
    tag : str
        Unique identifier for the plot.
    directory : str, optional
        The full specification of the plot location.

    Returns
    -------
    None : None.

    References
    ----------

    http://seaborn.pydata.org/generated/seaborn.FacetGrid.html

    """

    logger.info("Generating Facet Grid")

    # Calculate the number of bins using the Freedman-Diaconis rule.

    tlen = len(df[target])
    tmax = df[target].max()
    tmin = df[target].min()
    trange = tmax - tmin
    iqr = df[target].quantile(Q3) - df[target].quantile(Q1)
    h = 2 * iqr * (tlen ** (-1/3))
    nbins = math.ceil(trange / h)

    # Generate the pair plot

    sns.set(style="darkgrid")

    fg = sns.FacetGrid(df, row=frow, col=fcol, margin_titles=True)
    bins = np.linspace(tmin, tmax, nbins)
    fg.map(plt.hist, target, color="steelblue", bins=bins, lw=0)

    # Save the plot
    write_plot('seaborn', fg, 'facet_grid', tag, directory)


#
# Function plot_distribution
# 
开发者ID:ScottfreeLLC,项目名称:AlphaPy,代码行数:58,代码来源:plots.py

示例12: visualize_outlierscore

# 需要导入模块: import seaborn [as 别名]
# 或者: from seaborn import FacetGrid [as 别名]
def visualize_outlierscore(value,label,contamination,path=None):
    """
    Visualize the predicted outlier score.

    Parameters
    ----------
    value: numpy array of shape (n_test, )
        The outlier score of the test data.
    label: numpy array of shape (n_test, )
        The label of test data produced by the algorithm.
    contamination : float in (0., 0.5), optional (default=0.1)
        The amount of contamination of the data set,
        i.e. the proportion of outliers in the data set. Used when fitting to
        define the threshold on the decision function.
    path: string
        The saving path for result figures.
    """

    sns.set(style="darkgrid")

    ts = np.arange(len(value))
    outlier_label=[]
    for i in range(len(ts)):
        if label[i]==1:
            outlier_label.append('inlier')
        else:
            outlier_label.append('outlier')
    X_outlier = pd.DataFrame({'ts':ts,'Outlier_score':value,'outlier_label':np.array(outlier_label)})
    pal = dict(inlier="#4CB391", outlier="gray")
    g = sns.FacetGrid(X_outlier, hue="outlier_label", palette=pal, height=5)
    g.map(plt.scatter, "ts", "Outlier_score", s=30, alpha=.7, linewidth=.5, edgecolor="white")

    ranking = np.sort(value)
    threshold = ranking[int((1 - contamination) * len(ranking))]
    plt.hlines(threshold, xmin=0, xmax=len(X_outlier)-1, colors="g", zorder=100, label='Threshold')
    threshold = ranking[int((contamination) * len(ranking))]
    plt.hlines(threshold, xmin=0, xmax=len(X_outlier)-1, colors="g", zorder=100, label='Threshold2')
    if path:
        plt.savefig(path+'/visualize_outlierscore.png')
    plt.show()



# def visualize_outlierresult(X,label,path=None):
#     """
#     Visualize the predicted outlier result.
#
#     Parameters
#     ----------
#     X: numpy array of shape (n_test, n_features)
#         The test data.
#     label: numpy array of shape (n_test, )
#         The label of test data produced by the algorithm.
#
#     """
#     X['outlier']=pd.Series(label)
#     pal = dict(inlier="#4CB391", outlier="gray")
#     g = sns.pairplot(X, hue="outlier", palette=pal)
#     if path:
#         plt.savefig(path+'/visualize_outlierresult.png')
#     plt.show() 
开发者ID:datamllab,项目名称:pyodds,代码行数:63,代码来源:plotUtils.py


注:本文中的seaborn.FacetGrid方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。