本文整理汇总了Python中scipy.zeros方法的典型用法代码示例。如果您正苦于以下问题:Python scipy.zeros方法的具体用法?Python scipy.zeros怎么用?Python scipy.zeros使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类scipy
的用法示例。
在下文中一共展示了scipy.zeros方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: impz
# 需要导入模块: import scipy [as 别名]
# 或者: from scipy import zeros [as 别名]
def impz(b,a):
"""Pseudo implementation of the impz method of MATLAB"""
#% Compute time vector
# M = 0; NN = [];
# if isempty(N)
# % if not specified, determine the length
# if isTF
# N = impzlength(b,a,.00005);
# else
# N = impzlength(b,.00005);
# end
p = np.roots(a)
N = stableNmarginal_length(p, 0.00005, 0)
N = len(b) * len(b) * len(b) # MATLAB AUTOFINDS THE SIZE HERE...
#TODO: Implement some way of finding the autosieze of this... I used a couple of examples... matlab gave 43 as length we give 64
x = zeros(N)
x[0] = 1
h = lfilter(b,a, x)
return h
示例2: delta_calc
# 需要导入模块: import scipy [as 别名]
# 或者: from scipy import zeros [as 别名]
def delta_calc(airtemp):
"""
Calculates slope of saturation vapour pressure curve at air temperature [kPa/Celsius]
http://www.fao.org/docrep/x0490e/x0490e07.htm
:param airtemp: Temperature in Celsius
:return: slope of saturation vapour pressure curve [kPa/Celsius]
"""
l = sp.size(airtemp)
if l < 2:
temp = airtemp + 237.3
b = 0.6108*(math.exp((17.27*airtemp)/temp))
delta = (4098*b)/(temp**2)
else:
delta = sp.zeros(l)
for i in range(0, l):
temp = airtemp[i] + 237.3
b = 0.6108*(math.exp(17.27*airtemp[i])/temp)
delta[i] = (4098*b)/(temp**2)
return delta
示例3: delta_calc
# 需要导入模块: import scipy [as 别名]
# 或者: from scipy import zeros [as 别名]
def delta_calc(airtemp):
"""
Calculates slope of saturation vapour pressure curve at air temperature [kPa/Celsius]
http://www.fao.org/docrep/x0490e/x0490e07.htm
:param airtemp: Temperature in Celsius
:return: slope of saturation vapour pressure curve [kPa/Celsius]
"""
l = sp.size(airtemp)
if l < 2:
temp_kelvin = airtemp + 237.3
b = 0.6108*(math.exp((17.27*airtemp)/temp_kelvin))
delta = (4098*b)/(temp_kelvin**2)
else:
delta = sp.zeros(l)
for i in range(0, l):
temp_kelvin = airtemp[i] + 237.3
b = 0.6108*(math.exp(17.27*airtemp[i])/temp_kelvin)
delta[i] = (4098*b)/(temp_kelvin**2)
return delta
示例4: delta_calc
# 需要导入模块: import scipy [as 别名]
# 或者: from scipy import zeros [as 别名]
def delta_calc(airtemp):
"""
Calculates slope of saturation vapour pressure curve at air temperature [kPa/Celsius]
http://www.fao.org/docrep/x0490e/x0490e07.htm
:param airtemp: Temperature in Celsius
:return: slope of saturation vapour pressure curve [kPa/Celsius]
"""
l = sp.size(airtemp)
if l < 2:
temp = airtemp + 237.3
b = 0.6108 * (math.exp((17.27 * airtemp) / temp))
delta = (4098 * b) / (temp ** 2)
else:
delta = sp.zeros(l)
for i in range(0, l):
temp = airtemp[i] + 237.3
b = 0.6108 * (math.exp(17.27 * airtemp[i]) / temp)
delta[i] = (4098 * b) / (temp ** 2)
return delta
示例5: calculate_daily_extraterrestrial_irradiation
# 需要导入模块: import scipy [as 别名]
# 或者: from scipy import zeros [as 别名]
def calculate_daily_extraterrestrial_irradiation(doy, latitude):
lat = latitude
l = np.size(doy)
s = 0.0820 # MJ m-2 min-1
lat_rad = lat * (math.pi / 180)
if l < 2:
day = doy
dr = 1 + (0.033 * math.cos((2 * math.pi * day) / 365)) # inverse relative distance Earth-Sun
dt = 0.409 * math.sin(((2 * math.pi * day) / 365) - 1.39) # solar declination in radian
ws = math.acos(-math.tan(lat_rad) * math.tan(dt)) # sunset hour angle in radian
rext = ((24* 60) / math.pi) * s * dr * ((ws * math.sin(lat_rad) * math.sin(dt)) + (math.cos(lat_rad) * math.cos(dt) * math.sin(ws))) # MJm-2day-1
else:
rext = np.zeros(l)
for i in range(0, l):
day = doy[i]
dr = 1 + (0.033 * math.cos((2 * math.pi * day) / 365)) # inverse relative distance Earth-Sun
dt = 0.409 * math.sin(((2 * math.pi * day) / 365) - 1.39) # solar declination in radian
ws = math.acos(-math.tan(lat_rad) * math.tan(dt)) # sunset hour angle in radian
rext[i] = ((24 * 60) / math.pi) * s * dr * ((ws * math.sin(lat_rad) * math.sin(dt)) + (math.cos(lat_rad) * math.cos(dt) * math.sin(ws))) # MJm-2day-1
return rext
示例6: gap
# 需要导入模块: import scipy [as 别名]
# 或者: from scipy import zeros [as 别名]
def gap(data, refs=None, nrefs=20, ks=range(1,11), method=None):
shape = data.shape
if refs is None:
tops = data.max(axis=0)
bots = data.min(axis=0)
dists = scipy.matrix(scipy.diag(tops-bots))
rands = scipy.random.random_sample(size=(shape[0], shape[1], nrefs))
for i in range(nrefs):
rands[:, :, i] = rands[:, :, i]*dists+bots
else:
rands = refs
gaps = scipy.zeros((len(ks),))
for (i, k) in enumerate(ks):
g1 = method(n_clusters=k).fit(data)
(kmc, kml) = (g1.cluster_centers_, g1.labels_)
disp = sum([euclidean(data[m, :], kmc[kml[m], :]) for m in range(shape[0])])
refdisps = scipy.zeros((rands.shape[2],))
for j in range(rands.shape[2]):
g2 = method(n_clusters=k).fit(rands[:, :, j])
(kmc, kml) = (g2.cluster_centers_, g2.labels_)
refdisps[j] = sum([euclidean(rands[m, :, j], kmc[kml[m],:]) for m in range(shape[0])])
gaps[i] = scipy.log(scipy.mean(refdisps))-scipy.log(disp)
return gaps
示例7: coupling_optim_garrick
# 需要导入模块: import scipy [as 别名]
# 或者: from scipy import zeros [as 别名]
def coupling_optim_garrick(y,t):
creation=s.zeros(n_bin)
destruction=s.zeros(n_bin)
#now I try to rewrite this in a more optimized way
destruction = -s.dot(s.transpose(kernel),y)*y #much more concise way to express\
#the destruction of k-mers
for k in xrange(n_bin):
kyn = (kernel*f_garrick[:,:,k])*y[:,s.newaxis]*y[s.newaxis,:]
creation[k] = s.sum(kyn)
creation=0.5*creation
out=creation+destruction
return out
#Now I work with the function for espressing smoluchowski equation when a uniform grid is used
示例8: coupling_optim
# 需要导入模块: import scipy [as 别名]
# 或者: from scipy import zeros [as 别名]
def coupling_optim(y,t):
creation=s.zeros(n_bin)
destruction=s.zeros(n_bin)
#now I try to rewrite this in a more optimized way
destruction = -s.dot(s.transpose(kernel),y)*y #much more concise way to express\
#the destruction of k-mers
kyn = kernel*y[:,s.newaxis]*y[s.newaxis,:]
for k in xrange(n_bin):
creation[k] = s.sum(kyn[s.arange(k),k-s.arange(k)-1])
creation=0.5*creation
out=creation+destruction
return out
#Now I go for the optimal optimization of the chi_{i,j,k} coefficients used by Garrick for
# dealing with a non-uniform grid.
示例9: star_graph_lumped
# 需要导入模块: import scipy [as 别名]
# 或者: from scipy import zeros [as 别名]
def star_graph_lumped(N, tau, gamma, I0, tmin, tmax, tcount):
times = scipy.linspace(tmin, tmax, tcount)
# [[central node infected] + [central node susceptible]]
#X = [Y_1^1, Y_1^2, ..., Y_1^{N}, Y_2^0, Y_2^1, ..., Y_2^{N-1}]
X0 = scipy.zeros(2*N) #length 2*N of just 0 entries
X0[I0]=I0*1./N #central infected, + I0-1 periph infected prob
X0[N+I0] = 1-I0*1./N #central suscept + I0 periph infected
X = EoN.my_odeint(star_graph_dX, X0, times, args = (tau, gamma, N))
#X looks like [[central susceptible,k periph] [ central inf, k-1 periph]] x T
central_inf = X[:,:N]
central_susc = X[:,N:]
I = scipy.array([ sum(k*central_susc[t][k] for k in range(N))
+ sum((k+1)*central_inf[t][k] for k in range(N))
for t in range(len(X))])
S = N-I
return times, S, I
示例10: star_graph_lumped
# 需要导入模块: import scipy [as 别名]
# 或者: from scipy import zeros [as 别名]
def star_graph_lumped(N, tau, gamma, I0, tmin, tmax, tcount):
times = scipy.linspace(tmin, tmax, tcount)
# [[central node infected] + [central node susceptible]]
#X = [Y_1^1, Y_1^2, ..., Y_1^{N}, Y_2^0, Y_2^1, ..., Y_2^{N-1}]
X0 = scipy.zeros(2*N) #length 2*N of just 0 entries
#X0[I0]=I0*1./N #central infected, + I0-1 periph infected prob
X0[N+I0] = 1#-I0*1./N #central suscept + I0 periph infected
X = EoN.my_odeint(star_graph_dX, X0, times, args = (tau, gamma, N))
#X looks like [[central susceptible,k periph] [ central inf, k-1 periph]] x T
central_susc = X[:,N:]
central_inf = X[:,:N]
print(central_susc[-1][:])
print(central_inf[-1][:])
I = scipy.array([ sum(k*central_susc[t][k] for k in range(N))
+ sum((k+1)*central_inf[t][k] for k in range(N))
for t in range(len(X))])
S = N-I
return times, S, I
示例11: _flat_field
# 需要导入模块: import scipy [as 别名]
# 或者: from scipy import zeros [as 别名]
def _flat_field(X, uniformity_thresh):
"""."""
Xhoriz = _low_frequency_horiz(X, sigma=4.0)
Xhorizp = _low_frequency_horiz(X, sigma=3.0)
nl, nb, nc = X.shape
FF = s.zeros((nb, nc))
use_ff = s.ones((X.shape[0], X.shape[2])) > 0
for b in range(nb):
xsub = Xhoriz[:, b, :]
xsubp = Xhorizp[:, b, :]
mu = xsub.mean(axis=0)
dists = abs(xsub - mu)
distsp = abs(xsubp - mu)
thresh = _percentile(dists.flatten(), 90.0)
uthresh = dists * uniformity_thresh
#use = s.logical_and(dists<thresh, abs(dists-distsp) < uthresh)
use = dists < thresh
FF[b, :] = ((xsub*use).sum(axis=0)/use.sum(axis=0)) / \
((X[:, b, :]*use).sum(axis=0)/use.sum(axis=0))
use_ff = s.logical_and(use_ff, use)
return FF, Xhoriz, Xhorizp, s.array(use_ff)
示例12: __MR_W_D_matrix
# 需要导入模块: import scipy [as 别名]
# 或者: from scipy import zeros [as 别名]
def __MR_W_D_matrix(self,img,labels):
s = sp.amax(labels)+1
vect = self.__MR_superpixel_mean_vector(img,labels)
adj = self.__MR_get_adj_loop(labels)
W = sp.spatial.distance.squareform(sp.spatial.distance.pdist(vect))
W = sp.exp(-1*W / self.weight_parameters['delta'])
W[adj.astype(np.bool)] = 0
D = sp.zeros((s,s)).astype(float)
for i in range(s):
D[i, i] = sp.sum(W[i])
return W,D
示例13: compute_score
# 需要导入模块: import scipy [as 别名]
# 或者: from scipy import zeros [as 别名]
def compute_score(self, img_idx, y, x, mask):
" Compute the score for deck or met with idx "
qtrwin = self.winsize/2
if mask==0:
mask_file = self.datafiles[img_idx].split('.')[0] + '.jpg'
elif mask==1:
mask_file = self.datafiles[img_idx].split('.')[0] + '.msk.jpg'
else:
mask_file = self.datafiles[img_idx].split('.')[0] + '.shadow.jpg'
selections_pad = N.zeros((self.height[img_idx] + self.winsize,
self.width[img_idx] + self.winsize))
mask_img = cv2.imread(mask_file, 0)
selections_pad[qtrwin:self.height[img_idx]+qtrwin,
qtrwin:self.width[img_idx]+qtrwin] = mask_img
csel_mask = selections_pad[y:y+self.winsize, x:x+self.winsize]
# Matches are pixels with intensity 255, so divide by this
# to get number of matching pixels.
return (csel_mask.sum()/255)
示例14: test_lyap
# 需要导入模块: import scipy [as 别名]
# 或者: from scipy import zeros [as 别名]
def test_lyap(self):
A = array([[-1, 1],[-1, 0]])
Q = array([[1,0],[0,1]])
X = lyap(A,Q)
# print("The solution obtained is ", X)
assert_array_almost_equal(A.dot(X) + X.dot(A.T) + Q, zeros((2,2)))
A = array([[1, 2],[-3, -4]])
Q = array([[3, 1],[1, 1]])
X = lyap(A,Q)
# print("The solution obtained is ", X)
assert_array_almost_equal(A.dot(X) + X.dot(A.T) + Q, zeros((2,2)))
示例15: test_lyap_sylvester
# 需要导入模块: import scipy [as 别名]
# 或者: from scipy import zeros [as 别名]
def test_lyap_sylvester(self):
A = 5
B = array([[4, 3], [4, 3]])
C = array([2, 1])
X = lyap(A,B,C)
# print("The solution obtained is ", X)
assert_array_almost_equal(A * X + X.dot(B) + C, zeros((1,2)))
A = array([[2,1],[1,2]])
B = array([[1,2],[0.5,0.1]])
C = array([[1,0],[0,1]])
X = lyap(A,B,C)
# print("The solution obtained is ", X)
assert_array_almost_equal(A.dot(X) + X.dot(B) + C, zeros((2,2)))