当前位置: 首页>>代码示例>>Python>>正文


Python norm.sf方法代码示例

本文整理汇总了Python中scipy.stats.norm.sf方法的典型用法代码示例。如果您正苦于以下问题:Python norm.sf方法的具体用法?Python norm.sf怎么用?Python norm.sf使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在scipy.stats.norm的用法示例。


在下文中一共展示了norm.sf方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _true_positive_fraction

# 需要导入模块: from scipy.stats import norm [as 别名]
# 或者: from scipy.stats.norm import sf [as 别名]
def _true_positive_fraction(z_vals, hommel_value, alpha):
    """Given a bunch of z-avalues, return the true positive fraction

    Parameters
    ----------
    z_vals: array,
            a set of z-variates from which the FDR is computed
    hommel_value: int,
           the Hommel value, used in the computations
    alpha: float,
           desired FDR control

    Returns
    -------
    threshold: float,
               Estimated true positive fraction in the set of values
    """
    z_vals_ = - np.sort(- z_vals)
    p_vals = norm.sf(z_vals_)
    n_samples = len(p_vals)
    c = np.ceil((hommel_value * p_vals) / alpha)
    unique_c, counts = np.unique(c, return_counts=True)
    criterion = 1 - unique_c + np.cumsum(counts)
    proportion_true_discoveries = np.maximum(0, criterion.max() / n_samples)
    return proportion_true_discoveries 
开发者ID:nilearn,项目名称:nistats,代码行数:27,代码来源:thresholding.py

示例2: _p_value

# 需要导入模块: from scipy.stats import norm [as 别名]
# 或者: from scipy.stats.norm import sf [as 别名]
def _p_value(self):
        r"""
        Returns the p-value of the Freidman test.

        Returns
        -------
        pval: float
            The p-value of the Friedman test statistic given a chi-square distribution.

        """
        pval = chi2.sf(self.xr2, self.k - 1)

        return pval 
开发者ID:aschleg,项目名称:hypothetical,代码行数:15,代码来源:nonparametric.py

示例3: _test_statistic

# 需要导入模块: from scipy.stats import norm [as 别名]
# 或者: from scipy.stats.norm import sf [as 别名]
def _test_statistic(self):
        r"""
        Returns the Van der Waerden test statistic, :math:`T_1` and the associated p-value.

        Returns
        -------
        t1 : float
            The Van der Waerden test statistic
        p_value : float
            The computed p-value

        Notes
        -----
        The Van der Waerden test statistic, :math:`T_1` is defined as:

        .. math::

            T_1 = \frac{1}{s^2} \sum^k_{i=1} n_i (\bar{A}_i)^2

        References
        ----------
        Conover, W. J. (1999). Practical Nonparameteric Statistics (Third ed.). Wiley.

        Wikipedia contributors. "Van der Waerden test." Wikipedia, The Free Encyclopedia.
            Wikipedia, The Free Encyclopedia, 8 Feb. 2017. Web. 8 Mar. 2020.

        """
        average_scores = np.array([i for _, i in self.average_scores])
        t1 = np.sum(self._group_obs * average_scores ** 2) / self.score_variance

        p_value = chi2.sf(t1, self.k - 1)

        return t1, p_value

    # def _min_significant_difference(self):
    #     mse = self.score_variance * ((self.n - 1 - self.test_statistic) / (self.n - self.k))
    #
    #     msd = t.ppf(1 - self.alpha / 2, self.n - self.k) * np.sqrt(2 * mse / self.k)
    #
    #     return msd 
开发者ID:aschleg,项目名称:hypothetical,代码行数:42,代码来源:nonparametric.py

示例4: pvalues

# 需要导入模块: from scipy.stats import norm [as 别名]
# 或者: from scipy.stats.norm import sf [as 别名]
def pvalues(self):
        """
        (array) The p-values associated with the z-statistics of the
        coefficients. Note that the coefficients are assumed to have a Normal
        distribution.
        """
        return norm.sf(np.abs(self.zvalues)) * 2 
开发者ID:birforce,项目名称:vnpy_crypto,代码行数:9,代码来源:mlemodel.py

示例5: pvalues

# 需要导入模块: from scipy.stats import norm [as 别名]
# 或者: from scipy.stats.norm import sf [as 别名]
def pvalues(self):
        return norm.sf(np.abs(self.tvalues))*2 
开发者ID:birforce,项目名称:vnpy_crypto,代码行数:4,代码来源:ar_model.py

示例6: pvalues

# 需要导入模块: from scipy.stats import norm [as 别名]
# 或者: from scipy.stats.norm import sf [as 别名]
def pvalues(self):
        _check_at_is_all(self.margeff_options)
        return norm.sf(np.abs(self.tvalues)) * 2 
开发者ID:birforce,项目名称:vnpy_crypto,代码行数:5,代码来源:discrete_margins.py

示例7: _compute_hommel_value

# 需要导入模块: from scipy.stats import norm [as 别名]
# 或者: from scipy.stats.norm import sf [as 别名]
def _compute_hommel_value(z_vals, alpha, verbose=False):
    """Compute the All-Resolution Inference hommel-value"""
    if alpha < 0 or alpha > 1:
        raise ValueError('alpha should be between 0 and 1')
    z_vals_ = - np.sort(- z_vals)
    p_vals = norm.sf(z_vals_)
    n_samples = len(p_vals)

    if len(p_vals) == 1:
        return p_vals[0] > alpha
    if p_vals[0] > alpha:
        return n_samples
    slopes = (alpha - p_vals[: - 1]) / np.arange(n_samples, 1, -1)
    slope = np.max(slopes)
    hommel_value = np.trunc(n_samples + (alpha - slope * n_samples) / slope)
    if verbose:
        try:
            from matplotlib import pyplot as plt
        except ImportError:
            warnings.warn('"verbose" option requires the package Matplotlib.'
                          'Please install it using `pip install matplotlib`.')
        else:
            plt.figure()
            plt.plot(p_vals, 'o')
            plt.plot([n_samples - hommel_value, n_samples], [0, alpha])
            plt.plot([0, n_samples], [0, 0], 'k')
            plt.show(block=False)
    return np.minimum(hommel_value, n_samples) 
开发者ID:nilearn,项目名称:nistats,代码行数:30,代码来源:thresholding.py

示例8: fdr_threshold

# 需要导入模块: from scipy.stats import norm [as 别名]
# 或者: from scipy.stats.norm import sf [as 别名]
def fdr_threshold(z_vals, alpha):
    """ return the Benjamini-Hochberg FDR threshold for the input z_vals

    Parameters
    ----------
    z_vals: array,
            a set of z-variates from which the FDR is computed
    alpha: float,
           desired FDR control

    Returns
    -------
    threshold: float,
               FDR-controling threshold from the Benjamini-Hochberg procedure
    """
    if alpha < 0 or alpha > 1:
        raise ValueError(
            'alpha should be between 0 and 1. {} was provided'.format(alpha))
    z_vals_ = - np.sort(- z_vals)
    p_vals = norm.sf(z_vals_)
    n_samples = len(p_vals)
    pos = p_vals < alpha * np.linspace(
        .5 / n_samples, 1 - .5 / n_samples, n_samples)
    if pos.any():
        return (z_vals_[pos][-1] - 1.e-12)

    return np.infty 
开发者ID:nilearn,项目名称:nistats,代码行数:29,代码来源:thresholding.py

示例9: test_z_score

# 需要导入模块: from scipy.stats import norm [as 别名]
# 或者: from scipy.stats.norm import sf [as 别名]
def test_z_score():
    p = np.random.rand(10)
    assert_array_almost_equal(norm.sf(z_score(p)), p)
    # check the numerical precision
    for p in [1.e-250, 1 - 1.e-16]:
        assert_array_almost_equal(z_score(p), norm.isf(p))
    assert_array_almost_equal(z_score(np.float32(1.e-100)), norm.isf(1.e-300)) 
开发者ID:nilearn,项目名称:nistats,代码行数:9,代码来源:test_utils.py

示例10: two_tailed_ztest

# 需要导入模块: from scipy.stats import norm [as 别名]
# 或者: from scipy.stats.norm import sf [as 别名]
def two_tailed_ztest(success1, success2, total1, total2):
    """
    Two-tailed z score for proportions

    Parameters
    -------
    success1 : int
        the number of success in `total1` trials/observations

    success2 : int
        the number of success in `total2` trials/observations

    total1 : int
        the number of trials or observations of class 1

    total2 : int
        the number of trials or observations of class 2

    Returns
    -------
    zstat : float
        z score for two tailed z-test
    p_value : float
        p value for two tailed z-test
    """
    p1 = success1 / float(total1)
    p2 = success2 / float(total2)
    p_pooled = (success1 + success2) / float(total1 + total2)

    obs_ratio = (1. / total1 + 1. / total2)
    var = p_pooled * (1 - p_pooled) * obs_ratio

    # calculate z-score using foregoing values
    zstat = (p1 - p2) / np.sqrt(var)

    # calculate associated p-value for 2-tailed normal distribution
    p_value = norm.sf(abs(zstat)) * 2

    return zstat, p_value 
开发者ID:pymetrics,项目名称:audit-ai,代码行数:41,代码来源:general.py

示例11: get_cohens_d_df

# 需要导入模块: from scipy.stats import norm [as 别名]
# 或者: from scipy.stats.norm import sf [as 别名]
def get_cohens_d_df(self, cat_X, ncat_X, orig_cat_X, orig_ncat_X, correction_method=None):
        empty_cat_X_smoothing_doc = np.zeros((1, cat_X.shape[1]))
        empty_ncat_X_smoothing_doc = np.zeros((1, ncat_X.shape[1]))
        smoothed_cat_X = np.vstack([empty_cat_X_smoothing_doc, cat_X])
        smoothed_ncat_X = np.vstack([empty_ncat_X_smoothing_doc, ncat_X])
        n1, n2 = float(smoothed_cat_X.shape[0]), float(smoothed_ncat_X.shape[0])
        n = n1 + n2
        #print(cat_X.shape, type(cat_X))
        m1 = cat_X.mean(axis=0).A1 if type(cat_X) == np.matrix else cat_X.mean(axis=0)
        m2 = ncat_X.mean(axis=0).A1 if type(ncat_X) == np.matrix else ncat_X.mean(axis=0)
        v1 = smoothed_cat_X.var(axis=0).A1 if type(smoothed_cat_X) == np.matrix else smoothed_cat_X.mean(axis=0)
        v2 = smoothed_ncat_X.var(axis=0).A1 if type(smoothed_ncat_X) == np.matrix else smoothed_ncat_X.mean(axis=0)
        s_pooled = np.sqrt(((n2 - 1) * v2 + (n1 - 1) * v1) / (n - 2.))
        cohens_d = (m1 - m2) / s_pooled
        cohens_d_se = np.sqrt(((n - 1.) / (n - 3)) * (4. / n) * (1 + np.square(cohens_d) / 8.))
        cohens_d_z = cohens_d / cohens_d_se
        cohens_d_p = norm.sf(cohens_d_z)
        hedges_r = cohens_d * (1 - 3. / ((4. * (n - 2)) - 1))
        hedges_r_se = np.sqrt(n / (n1 * n2) + np.square(hedges_r) / (n - 2.))
        hedges_r_z = hedges_r / hedges_r_se
        hedges_r_p = norm.sf(hedges_r_z)
        score_df = pd.DataFrame({
            'cohens_d': cohens_d,
            'cohens_d_se': cohens_d_se,
            'cohens_d_z': cohens_d_z,
            'cohens_d_p': cohens_d_p,
            'hedges_r': hedges_r,
            'hedges_r_se': hedges_r_se,
            'hedges_r_z': hedges_r_z,
            'hedges_r_p': hedges_r_p,
            'm1': m1,
            'm2': m2,
            'count1': orig_cat_X.sum(axis=0).A1,
            'count2': orig_ncat_X.sum(axis=0).A1,
            'docs1': (orig_cat_X > 0).sum(axis=0).A1,
            'docs2': (orig_ncat_X > 0).sum(axis=0).A1,
        }).fillna(0)
        if correction_method is not None:
            from statsmodels.stats.multitest import multipletests
            score_df['hedges_r_p_corr'] = 0.5
            for method in ['cohens_d', 'hedges_r']:
                score_df[method + '_p_corr'] = 0.5
                pvals = score_df.loc[(score_df['m1'] != 0) | (score_df['m2'] != 0), method + '_p']
                pvals = np.min(np.array([pvals, 1. - pvals])) * 2.
                score_df.loc[(score_df['m1'] != 0) | (score_df['m2'] != 0), method + '_p_corr'] = (
                    multipletests(pvals, method=correction_method)[1]
                )
        return score_df 
开发者ID:JasonKessler,项目名称:scattertext,代码行数:50,代码来源:CohensDCalculator.py

示例12: _runs_test

# 需要导入模块: from scipy.stats import norm [as 别名]
# 或者: from scipy.stats.norm import sf [as 别名]
def _runs_test(self):
        r"""
        Primary method for performing the one-sample runs test.

        Returns
        -------
        dict
            Dictionary containing relevant test statistics of the one-sample runs test.

        """
        n1, n2 = find_repeats(pd.factorize(self.x)[0]).counts

        r_range = np.arange(2, self.r + 1)
        evens = r_range[r_range % 2 == 0]
        odds = r_range[r_range % 2 != 0]

        p_even = 1 / comb(n1 + n2, n1) * np.sum(2 * comb(n1 - 1, evens / 2 - 1) * comb(n2 - 1, evens / 2 - 1))

        p_odd = 1 / comb(n1 + n2, n1) * np.sum(comb(n1 - 1, odds - 1) * comb(n2 - 1, odds - 2) +
                                               comb(n1 - 1, odds - 2) * comb(n2 - 1, odds - 1))

        p = p_even + p_odd

        if all(np.array([n1, n2]) <= 20):
            r_crit_1, r_crit_2 = r_critical_value(n1, n2)

            test_summary = {
                'probability': p,
                'r critical value 1': r_crit_1,
                'r critical value 2': r_crit_2
            }
            return test_summary

        else:
            mean = (2 * n1 * n2) / (n1 + n2) + 1
            sd = np.sqrt((2 * n1 * n2 * (2 * n1 * n2 - n1 - n2)) / ((n1 + n2) ** 2 * (n1 + n2 - 1)))
            z = (np.abs(self.r - mean) - self.continuity * 0.5) / sd
            p_val = norm.sf(z) * 2

            test_summary = {
                'probability': p,
                'mean of runs': mean,
                'standard deviation of runs': sd,
                'z-value': z,
                'p-value': p_val,
                'continuity': self.continuity
            }

            return test_summary 
开发者ID:aschleg,项目名称:hypothetical,代码行数:51,代码来源:nonparametric.py

示例13: circ_corrcl

# 需要导入模块: from scipy.stats import norm [as 别名]
# 或者: from scipy.stats.norm import sf [as 别名]
def circ_corrcl(x, y, tail='two-sided'):
    """Correlation coefficient between one circular and one linear variable
    random variables.

    Parameters
    ----------
    x : 1-D array_like
        First circular variable (expressed in radians).
        The range of ``x`` must be either :math:`[0, 2\\pi]` or
        :math:`[-\\pi, \\pi]`. If ``angles`` is not
        expressed in radians (e.g. degrees or 24-hours), please use the
        :py:func:`pingouin.convert_angles` function prior to using the present
        function.
    y : 1-D array_like
        Second circular variable (linear)
    tail : string
        Specify whether to return 'one-sided' or 'two-sided' p-value.

    Returns
    -------
    r : float
        Correlation coefficient
    pval : float
        Uncorrected p-value

    Notes
    -----
    Please note that NaN are automatically removed from datasets.

    Examples
    --------
    Compute the r and p-value between one circular and one linear variables.

    >>> from pingouin import circ_corrcl
    >>> x = [0.785, 1.570, 3.141, 0.839, 5.934]
    >>> y = [1.593, 1.291, -0.248, -2.892, 0.102]
    >>> r, pval = circ_corrcl(x, y)
    >>> print(round(r, 3), round(pval, 3))
    0.109 0.971
    """
    from scipy.stats import pearsonr, chi2
    x = np.asarray(x)
    y = np.asarray(y)
    assert x.size == y.size, 'x and y must have the same length.'

    # Remove NA
    x, y = remove_na(x, y, paired=True)
    n = x.size

    # Compute correlation coefficent for sin and cos independently
    rxs = pearsonr(y, np.sin(x))[0]
    rxc = pearsonr(y, np.cos(x))[0]
    rcs = pearsonr(np.sin(x), np.cos(x))[0]

    # Compute angular-linear correlation (equ. 27.47)
    r = np.sqrt((rxc**2 + rxs**2 - 2 * rxc * rxs * rcs) / (1 - rcs**2))

    # Compute p-value
    pval = chi2.sf(n * r**2, 2)
    pval = pval / 2 if tail == 'one-sided' else pval
    return r, pval 
开发者ID:raphaelvallat,项目名称:pingouin,代码行数:63,代码来源:circular.py

示例14: test_bimodality

# 需要导入模块: from scipy.stats import norm [as 别名]
# 或者: from scipy.stats.norm import sf [as 别名]
def test_bimodality(x, bins=30, kde=True, plot=False):
    """Test for bimodal distribution.
    """
    from scipy.stats import gaussian_kde, norm

    lb, ub = np.min(x), np.percentile(x, 99.9)
    grid = np.linspace(lb, ub if ub <= lb else np.max(x), bins)
    kde_grid = (
        gaussian_kde(x)(grid) if kde else np.histogram(x, bins=grid, density=True)[0]
    )

    idx = int(bins / 2) - 2
    idx += np.argmin(kde_grid[idx : idx + 4])

    peak_0 = kde_grid[:idx].argmax()
    peak_1 = kde_grid[idx:].argmax()
    kde_peak = kde_grid[idx:][
        peak_1
    ]  # min(kde_grid[:idx][peak_0], kde_grid[idx:][peak_1])
    kde_mid = kde_grid[idx:].mean()  # kde_grid[idx]

    t_stat = (kde_peak - kde_mid) / np.clip(np.std(kde_grid) / np.sqrt(bins), 1, None)
    p_val = norm.sf(t_stat)

    grid_0 = grid[:idx]
    grid_1 = grid[idx:]
    means = [
        (grid_0[peak_0] + grid_0[min(peak_0 + 1, len(grid_0) - 1)]) / 2,
        (grid_1[peak_1] + grid_1[min(peak_1 + 1, len(grid_1) - 1)]) / 2,
    ]

    if plot:
        color = "grey"
        if kde:
            pl.plot(grid, kde_grid, color=color)
            pl.fill_between(grid, 0, kde_grid, alpha=0.4, color=color)
        else:
            pl.hist(x, bins=grid, alpha=0.4, density=True, color=color)
        pl.axvline(means[0], color=color)
        pl.axvline(means[1], color=color)
        pl.axhline(kde_mid, alpha=0.2, linestyle="--", color=color)
        pl.show()

    return t_stat, p_val, means  # ~ t_test (reject unimodality if t_stat > 3) 
开发者ID:theislab,项目名称:scvelo,代码行数:46,代码来源:utils.py

示例15: full_glm_results

# 需要导入模块: from scipy.stats import norm [as 别名]
# 或者: from scipy.stats.norm import sf [as 别名]
def full_glm_results(endog_arr, exog_vars, return_resids = False, only_tvals = False, PCA_whiten = False, ZCA_whiten = False,  orthogonalize = True, orthogNear = False, orthog_GramSchmidt = False):
	if np.mean(exog_vars[:,0])!=1:
		print("Warning: the intercept is not included as the first column in your exogenous variable array")
	n, num_depv = endog_arr.shape
	k = exog_vars.shape[1]

	if orthogonalize:
		exog_vars = sm.add_constant(orthog_columns(exog_vars[:,1:]))
	elif orthogNear:
		exog_vars = sm.add_constant(ortho_neareast(exog_vars[:,1:]))
	elif orthog_GramSchmidt: # for when order matters AKA type 2 sum of squares
		exog_vars = sm.add_constant(gram_schmidt_orthonorm(exog_vars[:,1:]))
	else:
		pass

	invXX = np.linalg.inv(np.dot(exog_vars.T, exog_vars))

	DFbetween = k - 1 # aka df model
	DFwithin = n - k # aka df residuals
	DFtotal = n - 1
	if PCA_whiten:
		endog_arr = PCAwhiten(endog_arr)
	if ZCA_whiten:
		endog_arr = ZCAwhiten(endog_arr)

	a = cy_lin_lstsqr_mat(exog_vars, endog_arr)
	sigma2 = np.sum((endog_arr - np.dot(exog_vars,a))**2,axis=0) / (n - k)
	se = se_of_slope(num_depv,invXX,sigma2,k)

	if only_tvals:
		return a / se
	else:
		resids = endog_arr - np.dot(exog_vars,a)
		RSS = np.sum(resids**2,axis=0)
		TSS = np.sum((endog_arr - np.mean(endog_arr, axis =0))**2, axis = 0)
		R2 = 1 - (RSS/TSS)

		std_y = np.sqrt(TSS/DFtotal)
		R2_adj = 1 - ((1-R2)*DFtotal/(DFwithin))
		Fvalues = ((TSS-RSS)/(DFbetween))/(RSS/DFwithin)
		Tvalues = a / se
		Pvalues = t.sf(np.abs(Tvalues), DFtotal)*2
		if return_resids:
			fitted = np.dot(exog_vars, a)
			return (Fvalues, Tvalues, Pvalues, R2, R2_adj, np.array(resids), np.array(fitted))
		else:
			return (Fvalues, Tvalues, Pvalues, R2, R2_adj) 
开发者ID:trislett,项目名称:TFCE_mediation,代码行数:49,代码来源:tm_massunivariatemodels.py


注:本文中的scipy.stats.norm.sf方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。