当前位置: 首页>>代码示例>>Python>>正文


Python f.cdf方法代码示例

本文整理汇总了Python中scipy.stats.f.cdf方法的典型用法代码示例。如果您正苦于以下问题:Python f.cdf方法的具体用法?Python f.cdf怎么用?Python f.cdf使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在scipy.stats.f的用法示例。


在下文中一共展示了f.cdf方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _pvalue

# 需要导入模块: from scipy.stats import f [as 别名]
# 或者: from scipy.stats.f import cdf [as 别名]
def _pvalue(self):
        r"""
        Returns the p-value using the computed F-statistic

        Returns
        -------
        p : float
            The computed p-value given the found F-statistic and the group and residual degrees of freedom.

        Notes
        -----
        The :code:`cdf` method from Scipy's :code:`stats.f` class is used to find the p-value.

        References
        ----------
        Rencher, A. (n.d.). Methods of Multivariate Analysis (2nd ed.).
            Brigham Young University: John Wiley & Sons, Inc.

        """
        p = 1 - f.cdf(self.f_statistic,
                      self.group_degrees_of_freedom,
                      self.residual_degrees_of_freedom)

        return p 
开发者ID:aschleg,项目名称:hypothetical,代码行数:26,代码来源:aov.py

示例2: sign_test

# 需要导入模块: from scipy.stats import f [as 别名]
# 或者: from scipy.stats.f import cdf [as 别名]
def sign_test(data):
    """ Given the results drawn from two algorithms/methods X and Y, the sign test analyses if
    there is a difference between X and Y.

    .. note:: Null Hypothesis: Pr(X<Y)= 0.5

    :param data: An (n x 2) array or DataFrame contaning the results. In data, each column represents an algorithm and, and each row a problem.
    :return p_value: The associated p-value from the binomial distribution.
    :return bstat: Number of successes.
    """

    if type(data) == pd.DataFrame:
        data = data.values

    if data.shape[1] == 2:
        X, Y = data[:, 0], data[:, 1]
        n_perf = data.shape[0]
    else:
        raise ValueError(
            'Initialization ERROR. Incorrect number of dimensions for axis 1')

    # Compute the differences
    Z = X - Y
    # Compute the number of pairs Z<0
    Wminus = sum(Z < 0)
    # If H_0 is true ---> W follows Binomial(n,0.5)
    p_value_minus = 1 - binom.cdf(k=Wminus, p=0.5, n=n_perf)

    # Compute the number of pairs Z>0
    Wplus = sum(Z > 0)
    # If H_0 is true ---> W follows Binomial(n,0.5)
    p_value_plus = 1 - binom.cdf(k=Wplus, p=0.5, n=n_perf)

    p_value = 2 * min([p_value_minus, p_value_plus])

    return pd.DataFrame(data=np.array([Wminus, Wplus, p_value]), index=['Num X<Y', 'Num X>Y', 'p-value'],
                        columns=['Results']) 
开发者ID:jMetal,项目名称:jMetalPy,代码行数:39,代码来源:functions.py

示例3: friedman_test

# 需要导入模块: from scipy.stats import f [as 别名]
# 或者: from scipy.stats.f import cdf [as 别名]
def friedman_test(data):
    """ Friedman ranking test.

    ..note:: Null Hypothesis: In a set of k (>=2) treaments (or tested algorithms), all the treatments are equivalent, so their average ranks should be equal.

    :param data: An (n x 2) array or DataFrame contaning the results. In data, each column represents an algorithm and, and each row a problem.
    :return p_value: The associated p-value.
    :return friedman_stat: Friedman's chi-square.
    """

    # Initial Checking
    if type(data) == pd.DataFrame:
        data = data.values

    if data.ndim == 2:
        n_samples, k = data.shape
    else:
        raise ValueError(
            'Initialization ERROR. Incorrect number of array dimensions')
    if k < 2:
        raise ValueError(
            'Initialization Error. Incorrect number of dimensions for axis 1.')

    # Compute ranks.
    datarank = ranks(data)

    # Compute for each algorithm the ranking average.
    avranks = np.mean(datarank, axis=0)

    # Get Friedman statistics
    friedman_stat = (12.0 * n_samples) / (k * (k + 1.0)) * \
                    (np.sum(avranks ** 2) - (k * (k + 1) ** 2) / 4.0)

    # Compute p-value
    p_value = (1.0 - chi2.cdf(friedman_stat, df=(k - 1)))

    return pd.DataFrame(data=np.array([friedman_stat, p_value]), index=['Friedman-statistic', 'p-value'],
                        columns=['Results']) 
开发者ID:jMetal,项目名称:jMetalPy,代码行数:40,代码来源:functions.py

示例4: _p_value

# 需要导入模块: from scipy.stats import f [as 别名]
# 或者: from scipy.stats.f import cdf [as 别名]
def _p_value(self):
        r"""
        Finds the associated p-value of the W test statistic.

        Returns
        -------
        p : float
            The computed p-value of the associated W test statistic.

        """
        p = 1 - f.cdf(self.test_statistic,
                      self.k - 1,
                      self.n - self.k)

        return p 
开发者ID:aschleg,项目名称:hypothetical,代码行数:17,代码来源:aov.py

示例5: _f_stat_raw

# 需要导入模块: from scipy.stats import f [as 别名]
# 或者: from scipy.stats.f import cdf [as 别名]
def _f_stat_raw(self):
        """Returns the raw f-stat value."""
        from scipy.stats import f

        cols = self._x.columns

        if self._nw_lags is None:
            F = self._r2_raw / (self._r2_raw - self._r2_adj_raw)

            q = len(cols)
            if 'intercept' in cols:
                q -= 1

            shape = q, self.df_resid
            p_value = 1 - f.cdf(F, shape[0], shape[1])
            return F, shape, p_value

        k = len(cols)
        R = np.eye(k)
        r = np.zeros((k, 1))

        try:
            intercept = cols.get_loc('intercept')
            R = np.concatenate((R[0: intercept], R[intercept + 1:]))
            r = np.concatenate((r[0: intercept], r[intercept + 1:]))
        except KeyError:
            # no intercept
            pass

        return math.calc_F(R, r, self._beta_raw, self._var_beta_raw,
                           self._nobs, self.df) 
开发者ID:ktraunmueller,项目名称:Computable,代码行数:33,代码来源:ols.py

示例6: calc_F

# 需要导入模块: from scipy.stats import f [as 别名]
# 或者: from scipy.stats.f import cdf [as 别名]
def calc_F(R, r, beta, var_beta, nobs, df):
    """
    Computes the standard F-test statistic for linear restriction
    hypothesis testing

    Parameters
    ----------
    R: ndarray (N x N)
        Restriction matrix
    r: ndarray (N x 1)
        Restriction vector
    beta: ndarray (N x 1)
        Estimated model coefficients
    var_beta: ndarray (N x N)
        Variance covariance matrix of regressors
    nobs: int
        Number of observations in model
    df: int
        Model degrees of freedom

    Returns
    -------
    F value, (q, df_resid), p value
    """
    from scipy.stats import f

    hyp = np.dot(R, beta.reshape(len(beta), 1)) - r
    RSR = np.dot(R, np.dot(var_beta, R.T))

    q = len(r)

    F = np.dot(hyp.T, np.dot(inv(RSR), hyp)).squeeze() / q

    p_value = 1 - f.cdf(F, q, nobs - df)

    return F, (q, nobs - df), p_value 
开发者ID:ktraunmueller,项目名称:Computable,代码行数:38,代码来源:math.py

示例7: friedman_aligned_rank_test

# 需要导入模块: from scipy.stats import f [as 别名]
# 或者: from scipy.stats.f import cdf [as 别名]
def friedman_aligned_rank_test(data):
    """ Method of aligned ranks for the Friedman test.

    ..note:: Null Hypothesis: In a set of k (>=2) treaments (or tested algorithms), all the treatments are equivalent, so their average ranks should be equal.

    :param data: An (n x 2) array or DataFrame contaning the results. In data, each column represents an algorithm and, and each row a problem.
    :return p_value: The associated p-value.
    :return aligned_rank_stat: Friedman's aligned rank chi-square statistic.
    """

    # Initial Checking
    if type(data) == pd.DataFrame:
        data = data.values

    if data.ndim == 2:
        n_samples, k = data.shape
    else:
        raise ValueError(
            'Initialization ERROR. Incorrect number of array dimensions')
    if k < 2:
        raise ValueError(
            'Initialization Error. Incorrect number of dimensions for axis 1.')

    # Compute the average value achieved by all algorithms in each problem
    control = np.mean(data, axis=1)
    # Compute the difference between control an data
    diff = [data[:, j] - control for j in range(data.shape[1])]
    # rank diff
    alignedRanks = ranks(np.ravel(diff))
    alignedRanks = np.reshape(alignedRanks, newshape=(n_samples, k), order='F')

    # Compute statistic
    Rhat_i = np.sum(alignedRanks, axis=1)
    Rhat_j = np.sum(alignedRanks, axis=0)
    si, sj = np.sum(Rhat_i ** 2), np.sum(Rhat_j ** 2)

    A = sj - (k * n_samples ** 2 / 4.0) * (k * n_samples + 1) ** 2
    B1 = (k * n_samples * (k * n_samples + 1) * (2 * k * n_samples + 1) / 6.0)
    B2 = si / float(k)

    alignedRanks_stat = ((k - 1) * A) / (B1 - B2)

    p_value = 1 - chi2.cdf(alignedRanks_stat, df=k - 1)

    return pd.DataFrame(data=np.array([alignedRanks_stat, p_value]), index=['Aligned Rank stat', 'p-value'],
                        columns=['Results']) 
开发者ID:jMetal,项目名称:jMetalPy,代码行数:48,代码来源:functions.py

示例8: quade_test

# 需要导入模块: from scipy.stats import f [as 别名]
# 或者: from scipy.stats.f import cdf [as 别名]
def quade_test(data):
    """ Quade test.

    ..note:: Null Hypothesis: In a set of k (>=2) treaments (or tested algorithms), all the treatments are equivalent, so their average ranks should be equal.

    :param data: An (n x 2) array or DataFrame contaning the results. In data, each column represents an algorithm and, and each row a problem.
    :return p_value: The associated p-value from the F-distribution.
    :return fq: Computed F-value.
    """

    # Initial Checking
    if type(data) == pd.DataFrame:
        data = data.values

    if data.ndim == 2:
        n_samples, k = data.shape
    else:
        raise ValueError(
            'Initialization ERROR. Incorrect number of array dimensions')
    if k < 2:
        raise ValueError(
            'Initialization Error. Incorrect number of dimensions for axis 1.')

    # Compute ranks.
    datarank = ranks(data)
    # Compute the range of each problem
    problemRange = np.max(data, axis=1) - np.min(data, axis=1)
    # Compute problem rank
    problemRank = ranks(problemRange)

    # Compute S_stat: weight of each observation within the problem, adjusted to reflect
    # the significance of the problem when it appears.
    S_stat = np.zeros((n_samples, k))
    for i in range(n_samples):
        S_stat[i, :] = problemRank[i] * (datarank[i, :] - 0.5 * (k + 1))
    Salg = np.sum(S_stat, axis=0)

    # Compute Fq (Quade Test statistic) and associated p_value
    A = np.sum(S_stat ** 2)
    B = np.sum(Salg ** 2) / float(n_samples)

    if A == B:
        Fq = np.Inf
        p_value = (1 / (np.math.factorial(k))) ** (n_samples - 1)
    else:
        Fq = (n_samples - 1.0) * B / (A - B)
        p_value = 1 - f.cdf(Fq, k - 1, (k - 1) * (n_samples - 1))

    return pd.DataFrame(data=np.array([Fq, p_value]), index=['Quade Test statistic', 'p-value'], columns=['Results']) 
开发者ID:jMetal,项目名称:jMetalPy,代码行数:51,代码来源:functions.py

示例9: rm_anova

# 需要导入模块: from scipy.stats import f [as 别名]
# 或者: from scipy.stats.f import cdf [as 别名]
def rm_anova(data, output_sig = False, output_eta_sq = False):
	"""
	Repeated measure ANOVA for longitudinal dependent variables
	
	Parameters
	----------
	data : array
		Data array (N_intervals, N_individuals, N_dependent variables)
	
	Optional Flags
	----------
	output_sig : bool
		outputs p-values of F-statistics
	
	Returns
	-------
	F : array
		F-statistics of the interval variable
	P : array
		P-statistics of the interval variable (P = None if output_sig = False)
	partial_eta_sq : array
		Partial eta squared of the interval variable (partial_eta_sq = None if output_eta_sq = False)
	"""

	k = data.shape[0]
	ni = data.shape[1]
	mu_grand = np.zeros_like(np.mean(data[0],0))
	for i in range(k):
		mu_grand += np.mean(data[i],0)
	mu_grand = np.divide(mu_grand,k)

	SStime = np.zeros_like(np.mean(data[0],0))
	for i in range(k):
		SStime += (np.mean(data[i],0)-mu_grand)**2
	SStime *= ni

	SSw = np.zeros_like(np.mean(data[0],0))
	for i in range(k):
		SSw += np.sum(np.square(data[i] - np.mean(data[i],0)),0)

	SSsub = k * np.sum(np.square(np.divide((data.sum(0)),k) - mu_grand),0)
	SSerror = SSw - SSsub

	df_time = (k-1)
	df_error = (ni -1) * df_time

	MStime = np.divide(SStime, df_time)
	MSerror = np.divide(SSerror, df_error)
	F = np.divide(MStime, MSerror)
	if output_sig:
		P = 1 - f.cdf(F,df_time,df_error)
	else:
		P = None
	if output_eta_sq:
		partial_eta_sq = SStime / (SStime + SSerror)
	else:
		partial_eta_sq = None
	return(F, P, partial_eta_sq) 
开发者ID:trislett,项目名称:TFCE_mediation,代码行数:60,代码来源:pyfunc.py


注:本文中的scipy.stats.f.cdf方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。