本文整理汇总了Python中scipy.special.ndtr方法的典型用法代码示例。如果您正苦于以下问题:Python special.ndtr方法的具体用法?Python special.ndtr怎么用?Python special.ndtr使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类scipy.special
的用法示例。
在下文中一共展示了special.ndtr方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _test_grid_no_log
# 需要导入模块: from scipy import special [as 别名]
# 或者: from scipy.special import ndtr [as 别名]
def _test_grid_no_log(self, dtype, grid_spec, error_spec):
with self.test_session():
grid = _make_grid(dtype, grid_spec)
actual = sm.ndtr(grid).eval()
# Basic tests.
self.assertTrue(np.isfinite(actual).all())
# On the grid, 0 < cdf(x) < 1. The grid cannot contain everything due
# to numerical limitations of cdf.
self.assertTrue((actual > 0).all())
self.assertTrue((actual < 1).all())
_check_strictly_increasing(actual)
# Versus scipy.
expected = special.ndtr(grid)
# Scipy prematurely goes to zero at some places that we don't. So don't
# include these in the comparison.
self.assertAllClose(expected.astype(np.float64)[expected < 0],
actual.astype(np.float64)[expected < 0],
rtol=error_spec.rtol, atol=error_spec.atol)
示例2: z_to_p_val
# 需要导入模块: from scipy import special [as 别名]
# 或者: from scipy.special import ndtr [as 别名]
def z_to_p_val(z_scores):
# return norm.sf(-z_scores) - 0.5 + 0.5
return ndtr(z_scores)
示例3: get_p_values_from_counts
# 需要导入模块: from scipy import special [as 别名]
# 或者: from scipy.special import ndtr [as 别名]
def get_p_values_from_counts(self, y_i, y_j):
return ndtr(self.get_zeta_i_j_given_separate_counts(y_i, y_j))
示例4: integrate_box_1d
# 需要导入模块: from scipy import special [as 别名]
# 或者: from scipy.special import ndtr [as 别名]
def integrate_box_1d(self, low, high):
"""
Computes the integral of a 1D pdf between two bounds.
Parameters
----------
low : scalar
Lower bound of integration.
high : scalar
Upper bound of integration.
Returns
-------
value : scalar
The result of the integral.
Raises
------
ValueError
If the KDE is over more than one dimension.
"""
if self.d != 1:
raise ValueError("integrate_box_1d() only handles 1D pdfs")
stdev = ravel(sqrt(self.covariance))[0]
normalized_low = ravel((low - self.dataset) / stdev)
normalized_high = ravel((high - self.dataset) / stdev)
value = np.mean(special.ndtr(normalized_high) -
special.ndtr(normalized_low))
return value
示例5: _norm_cdf
# 需要导入模块: from scipy import special [as 别名]
# 或者: from scipy.special import ndtr [as 别名]
def _norm_cdf(x):
return sc.ndtr(x)
示例6: _norm_cdf
# 需要导入模块: from scipy import special [as 别名]
# 或者: from scipy.special import ndtr [as 别名]
def _norm_cdf(x):
return special.ndtr(x)
示例7: _norm_sf
# 需要导入模块: from scipy import special [as 别名]
# 或者: from scipy.special import ndtr [as 别名]
def _norm_sf(x):
return special.ndtr(-x)
示例8: label
# 需要导入模块: from scipy import special [as 别名]
# 或者: from scipy.special import ndtr [as 别名]
def label(self):
return 'ndtr'
示例9: forward_cpu
# 需要导入模块: from scipy import special [as 别名]
# 或者: from scipy.special import ndtr [as 别名]
def forward_cpu(self, x):
global _ndtr_cpu
if _ndtr_cpu is None:
try:
from scipy import special
_ndtr_cpu = special.ndtr
except ImportError:
warnings.warn(
'SciPy is not available. Forward computation of ndtr in'
' CPU can be slow without SciPy.',
chainer.warnings.PerformanceWarning)
_ndtr_cpu = numpy.vectorize(_slow_ndtr_cpu)
self.retain_inputs((0,))
return utils.force_array(_ndtr_cpu(x[0]), dtype=x[0].dtype),
示例10: ndtr
# 需要导入模块: from scipy import special [as 别名]
# 或者: from scipy.special import ndtr [as 别名]
def ndtr(x):
"""Elementwise cumulative distribution function of normal distribution.
.. note::
Forward computation in CPU can be slow if
`SciPy <https://www.scipy.org/>`_ is not available.
Args:
x (:class:`~chainer.Variable` or :ref:`ndarray`): Input variable.
Returns:
~chainer.Variable: Output variable.
"""
return Ndtr().apply((x,))[0]
示例11: test_ndtr
# 需要导入模块: from scipy import special [as 别名]
# 或者: from scipy.special import ndtr [as 别名]
def test_ndtr(self):
assert_mpmath_equal(sc.ndtr,
exception_to_nan(lambda z: mpmath.ncdf(z)),
[Arg()], n=200)
示例12: test_ndtr_complex
# 需要导入模块: from scipy import special [as 别名]
# 或者: from scipy.special import ndtr [as 别名]
def test_ndtr_complex(self):
assert_mpmath_equal(sc.ndtr,
lambda z: mpmath.erfc(-z/np.sqrt(2.))/2.,
[ComplexArg(a=complex(-10000, -10000), b=complex(10000, 10000))], n=400)
示例13: _test_grad_finite
# 需要导入模块: from scipy import special [as 别名]
# 或者: from scipy.special import ndtr [as 别名]
def _test_grad_finite(self, dtype):
with self.test_session():
x = tf.Variable([-100., 0., 100.], dtype=dtype)
output = (sm.log_ndtr(x) if self._use_log else sm.ndtr(x))
grad_output = tf.gradients(output, x)
tf.global_variables_initializer().run()
self.assert_all_true(np.isfinite(output.eval()))
self.assert_all_true(np.isfinite(grad_output[0].eval()))
示例14: PI
# 需要导入模块: from scipy import special [as 别名]
# 或者: from scipy.special import ndtr [as 别名]
def PI(mean, std, max_val, tradeoff):
return ndtr((mean - max_val - tradeoff)/std)
示例15: EI
# 需要导入模块: from scipy import special [as 别名]
# 或者: from scipy.special import ndtr [as 别名]
def EI(mean, std, max_val, tradeoff):
z = (mean - max_val - tradeoff) / std
return (mean - max_val - tradeoff)*ndtr(z) + std*norm.pdf(z)