本文整理汇总了Python中scipy.sparse.spmatrix方法的典型用法代码示例。如果您正苦于以下问题:Python sparse.spmatrix方法的具体用法?Python sparse.spmatrix怎么用?Python sparse.spmatrix使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类scipy.sparse
的用法示例。
在下文中一共展示了sparse.spmatrix方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: rmatvec_nd
# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import spmatrix [as 别名]
def rmatvec_nd(lin_op, x):
"""
Project a 1D or 2D numpy or sparse array using rmatvec. This is different from rmatvec
because it applies rmatvec to each row and column. If x is n x n and lin_op is n x k,
the result will be k x k.
:param LinearOperator lin_op: The linear operator to apply to x
:param np.ndarray|sp.spmatrix x: array/matrix to be projected
:return: the projected array
:rtype: np.ndarray|sp.spmatrix
"""
if x is None or lin_op is None:
return x
if isinstance(x, sp.spmatrix):
y = x.toarray()
elif np.isscalar(x):
y = np.array(x, ndmin=1)
else:
y = np.copy(x)
proj_func = lambda z: lin_op.rmatvec(z)
for j in range(y.ndim):
if y.shape[j] == lin_op.shape[0]:
y = np.apply_along_axis(proj_func, j, y)
return y
示例2: __init__
# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import spmatrix [as 别名]
def __init__(self, dim=None, mean=None, precision=None, mean_lin_op=None, support=None):
"""
:param int dim: dimensionality of the distribution. If None, inferred from mean or precision
:param float|np.ndarray|None mean: the mean, float or 1D array. If not supplied on init or
call-time, assumed to be 0. If scalar, assumes the mean is the same for all dimensions.
:param float|np.ndarray|sp.spmatrix|None precision: the precision matrix. If not supplied
on init or at call-time, assumed to be the identity.
If 1D, assumes that the diagonal of the precision matrix is passed in; if scalar
and CPD dimensionality > 1, assumes that the precision matrix is precision * identity
matrix.
:param None|IndexOperator mean_lin_op: linear transform operator for the mean parameter,
whose is shape is (dim, len(mean_vector))
:param tuple(float) support: Defines the support for the probability distribution. Passed
to solver pars updater to prevent the parameter from being set outside the range of the
supports.
"""
mean, precision, const = self._validate_args(dim=dim, mean=mean, precision=precision)
self.mean = mean.ravel() if self.dim > 1 else mean
self.precision = precision
self.hessian_cache = None
self.hessian_mean_cache = None
self.const = const
self.mean_lin_op = mean_lin_op
self.support = support
示例3: hessian_wrt_mean
# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import spmatrix [as 别名]
def hessian_wrt_mean(self):
""" The Hessian of the multivariate Gaussian w.r.t. its mean, potentially including the
linear projection.
:return: The Hessian w.r.t. the mean
:rtype: float|np.ndarray|sp.spmatrix
"""
if self.hessian_mean_cache is None:
hessian = self.hessian
if self.mean_lin_op is not None:
if np.isscalar(hessian) and isinstance(self.mean_lin_op, IndexOperator):
# index operator preserves diagonality
hessian = sp.diags(self.mean_lin_op.rmatvec(hessian * np.ones(self.dim)), 0)
elif np.isscalar(hessian):
hessian = hessian * np.eye(self.dim)
hessian = rmatvec_nd(self.mean_lin_op, hessian)
else:
hessian = rmatvec_nd(self.mean_lin_op, hessian)
self.hessian_mean_cache = hessian
return self.hessian_mean_cache
示例4: get_dependent_vars
# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import spmatrix [as 别名]
def get_dependent_vars(self, var_idx):
""" Given the indices of the query variables, var_idx, returns the set of dependent
variables (including var_idx); i.e., the smallest set S containing var_idx for which
(complement of S) indep of (S). This is done by finding all non-zero columns of the
`var_idx` rows of the precision matrix.
:param np.ndarray[int]|np.ndarray[bool] var_idx: indices of the query variables
:return: indices of the dependent variables
:rtype: np.ndarray[int]
"""
if isinstance(self.precision, sp.spmatrix):
prec = self.precision.tocsr()
elif np.isscalar(self.precision):
return var_idx
else:
prec = self.precision
return np.unique(np.nonzero(prec[var_idx, :])[1])
示例5: sparse_feeder
# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import spmatrix [as 别名]
def sparse_feeder(M):
"""
Prepares the input matrix into a format that is easy to feed into tensorflow's SparseTensor
Parameters
----------
M : scipy.sparse.spmatrix
Matrix to be fed
Returns
-------
indices : array-like, shape [n_edges, 2]
Indices of the sparse elements
values : array-like, shape [n_edges]
Values of the sparse elements
shape : array-like
Shape of the matrix
"""
M = sp.coo_matrix(M)
return np.vstack((M.row, M.col)).T, M.data, M.shape
示例6: sparse_mean_variance_axis
# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import spmatrix [as 别名]
def sparse_mean_variance_axis(mtx: sparse.spmatrix, axis: int):
"""
This code and internal functions are based on sklearns
`sparsefuncs.mean_variance_axis`.
Modifications:
* allow deciding on the output type, which can increase accuracy when calculating the mean and variance of 32bit floats.
* This doesn't currently implement support for null values, but could.
* Uses numba not cython
"""
assert axis in (0, 1)
if isinstance(mtx, sparse.csr_matrix):
ax_minor = 1
shape = mtx.shape
elif isinstance(mtx, sparse.csc_matrix):
ax_minor = 0
shape = mtx.shape[::-1]
else:
raise ValueError("This function only works on sparse csr and csc matrices")
if axis == ax_minor:
return sparse_mean_var_major_axis(
mtx.data, mtx.indices, mtx.indptr, *shape, np.float64
)
else:
return sparse_mean_var_minor_axis(mtx.data, mtx.indices, *shape, np.float64)
示例7: _eval_aux_operators
# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import spmatrix [as 别名]
def _eval_aux_operators(self, wavefn, threshold: float = 1e-12) -> np.ndarray:
values = [] # type: List[Tuple[float, int]]
for operator in self._aux_operators:
if operator is None:
values.append(None)
continue
value = 0.0
if operator.coeff != 0:
mat = operator.to_spmatrix()
# Terra doesn't support sparse yet, so do the matmul directly if so
# This is necessary for the particle_hole and other chemistry tests because the
# pauli conversions are 2^12th large and will OOM error if not sparse.
if isinstance(mat, scisparse.spmatrix):
value = mat.dot(wavefn).dot(np.conj(wavefn))
else:
value = StateFn(operator, is_measurement=True).eval(wavefn)
value = value.real if abs(value.real) > threshold else 0.0
values.append((value, 0))
return np.asarray(values)
示例8: __init__
# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import spmatrix [as 别名]
def __init__(self,
quadratic_program: Any, name: str,
linear: Union[ndarray, spmatrix, List[float], Dict[Union[str, int], float]],
sense: ConstraintSense,
rhs: float
) -> None:
"""
Args:
quadratic_program: The parent quadratic program.
name: The name of the constraint.
linear: The coefficients specifying the linear constraint.
sense: The sense of the constraint.
rhs: The right-hand-side of the constraint.
"""
super().__init__(quadratic_program, name, sense, rhs)
self._linear = LinearExpression(quadratic_program, linear)
示例9: minimize
# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import spmatrix [as 别名]
def minimize(self,
constant: float = 0.0,
linear: Union[ndarray, spmatrix, List[float], Dict[Union[str, int], float]] = None,
quadratic: Union[ndarray, spmatrix, List[List[float]],
Dict[Tuple[Union[int, str], Union[int, str]], float]] = None
) -> None:
"""Sets a quadratic objective to be minimized.
Args:
constant: the constant offset of the objective.
linear: the coefficients of the linear part of the objective.
quadratic: the coefficients of the quadratic part of the objective.
Returns:
The created quadratic objective.
"""
self._objective = QuadraticObjective(self, constant, linear, quadratic,
QuadraticObjective.Sense.MINIMIZE)
示例10: maximize
# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import spmatrix [as 别名]
def maximize(self,
constant: float = 0.0,
linear: Union[ndarray, spmatrix, List[float], Dict[Union[str, int], float]] = None,
quadratic: Union[ndarray, spmatrix, List[List[float]],
Dict[Tuple[Union[int, str], Union[int, str]], float]] = None
) -> None:
"""Sets a quadratic objective to be maximized.
Args:
constant: the constant offset of the objective.
linear: the coefficients of the linear part of the objective.
quadratic: the coefficients of the quadratic part of the objective.
Returns:
The created quadratic objective.
"""
self._objective = QuadraticObjective(self, constant, linear, quadratic,
QuadraticObjective.Sense.MAXIMIZE)
示例11: __init__
# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import spmatrix [as 别名]
def __init__(self, quadratic_program: Any,
coefficients: Union[ndarray, spmatrix, List[List[float]],
Dict[Tuple[Union[int, str], Union[int, str]], float]]) -> None:
"""Creates a new quadratic expression.
The quadratic expression can be defined via an array, a list, a sparse matrix, or a
dictionary that uses variable names or indices as keys and stores the values internally as a
dok_matrix. We stores values in a compressed way, i.e., values at symmetric positions are
summed up in the upper triangle. For example, {(0, 1): 1, (1, 0): 2} -> {(0, 1): 3}.
Args:
quadratic_program: The parent QuadraticProgram.
coefficients: The (sparse) representation of the coefficients.
"""
super().__init__(quadratic_program)
self.coefficients = coefficients
示例12: __init__
# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import spmatrix [as 别名]
def __init__(self, quadratic_program: Any,
coefficients: Union[ndarray, spmatrix, List[float],
Dict[Union[int, str], float]]) -> None:
"""Creates a new linear expression.
The linear expression can be defined via an array, a list, a sparse matrix, or a dictionary
that uses variable names or indices as keys and stores the values internally as a
dok_matrix.
Args:
quadratic_program: The parent QuadraticProgram.
coefficients: The (sparse) representation of the coefficients.
"""
super().__init__(quadratic_program)
self.coefficients = coefficients
示例13: __init__
# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import spmatrix [as 别名]
def __init__(
self,
adata: "anndata.AnnData",
X: Union[np.ndarray, sparse.spmatrix, None] = None,
var: Union[pd.DataFrame, Mapping[str, Sequence], None] = None,
varm: Union[AxisArrays, Mapping[str, np.ndarray], None] = None,
):
from .anndata import _gen_dataframe
self._adata = adata
self._n_obs = adata.n_obs
# construct manually
if adata.isbacked == (X is None):
self._X = X
self._var = _gen_dataframe(var, self.X.shape[1], ["var_names"])
self._varm = AxisArrays(self, 1, varm)
elif X is None: # construct from adata
self._X = adata.X.copy()
self._var = adata.var.copy()
self._varm = AxisArrays(self, 1, adata.varm.copy())
elif adata.isbacked:
raise ValueError("Cannot specify X if adata is backed")
示例14: X
# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import spmatrix [as 别名]
def X(self) -> Union[SparseDataset, np.ndarray, sparse.spmatrix]:
# TODO: Handle unsorted array of integer indices for h5py.Datasets
if not self._adata.isbacked:
return self._X
if not self._adata.file.is_open:
self._adata.file.open()
# Handle legacy file formats:
if "raw/X" in self._adata.file:
X = self._adata.file["raw/X"]
elif "raw.X" in self._adata.file:
X = self._adata.file["raw.X"] # Backwards compat
else:
raise AttributeError(
f"Could not find dataset for raw X in file: "
f"{self._adata.file.filename}."
)
if isinstance(X, h5py.Group):
X = SparseDataset(X)
# Check if we need to subset
if self._adata.is_view:
# TODO: As noted above, implement views of raw
# so we can know if we need to subset by var
return X[self._adata._oidx, slice(None)]
else:
return X
示例15: _move_adj_mtx
# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import spmatrix [as 别名]
def _move_adj_mtx(d):
"""
Read-time fix for moving adjacency matrices from uns to obsp
"""
n = d.get("uns", {}).get("neighbors", {})
obsp = d.setdefault("obsp", {})
for k in ("distances", "connectivities"):
if (
(k in n)
and isinstance(n[k], (spmatrix, np.ndarray))
and len(n[k].shape) == 2
):
warn(
f"Moving element from .uns['neighbors']['{k}'] to .obsp['{k}'].\n\n"
"This is where adjacency matrices should go now.",
FutureWarning,
)
obsp[k] = n.pop(k)