本文整理汇总了Python中scipy.sparse.linalg.spilu方法的典型用法代码示例。如果您正苦于以下问题:Python linalg.spilu方法的具体用法?Python linalg.spilu怎么用?Python linalg.spilu使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类scipy.sparse.linalg
的用法示例。
在下文中一共展示了linalg.spilu方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: GetPreconditioner
# 需要导入模块: from scipy.sparse import linalg [as 别名]
# 或者: from scipy.sparse.linalg import spilu [as 别名]
def GetPreconditioner(self,A, type="amg_smoothed_aggregation"):
"""Applies a suitable preconditioner to sparse matrix A
based on algebraic multigrid of incomplete LU/Cholesky factorisation
input:
A: [csc_matrix or csc_matrix]
type: [str] either "amg_smoothed_aggregation" for
a preconditioner based on algebraic multigrid
or "incomplete_lu" for scipy's spilu linear
operator
returns: A preconditioner that can be used in conjunction
with scipy's sparse linear iterative solvers
(the M keyword in scipy's iterative solver)
"""
if not (isspmatrix_csc(A) or isspmatrix_csr(A)):
raise TypeError("Matrix must be in CSC or CSR sparse format for preconditioning")
ml = smoothed_aggregation_solver(A)
return ml.aspreconditioner()
示例2: SetSolver
# 需要导入模块: from scipy.sparse import linalg [as 别名]
# 或者: from scipy.sparse.linalg import spilu [as 别名]
def SetSolver(self,linear_solver="direct", linear_solver_type="umfpack",
apply_preconditioner=False, preconditioner="amg_smoothed_aggregation",
iterative_solver_tolerance=1.0e-12, reduce_matrix_bandwidth=False,
geometric_discretisation=None):
"""
input:
linear_solver: [str] type of solver either "direct",
"iterative", "petsc" or "amg"
linear_solver_type [str] type of direct or linear solver to
use, for instance "umfpack", "superlu" or
"mumps" for direct solvers, or "cg", "gmres"
etc for iterative solvers or "amg" for algebraic
multigrid solver. See WhichSolvers method for
the complete set of available linear solvers
preconditioner: [str] either "smoothed_aggregation",
or "ruge_stuben" or "rootnode" for
a preconditioner based on algebraic multigrid
or "ilu" for scipy's spilu linear
operator
geometric_discretisation:
[str] type of geometric discretisation used, for
instance for FEM discretisations this would correspond
to "tri", "quad", "tet", "hex" etc
"""
self.solver_type = linear_solver
self.solver_subtype = "umfpack"
self.iterative_solver_tolerance = iterative_solver_tolerance
self.apply_preconditioner = apply_preconditioner
self.requires_cuthill_mckee = reduce_matrix_bandwidth
self.geometric_discretisation = geometric_discretisation
示例3: __init__
# 需要导入模块: from scipy.sparse import linalg [as 别名]
# 或者: from scipy.sparse.linalg import spilu [as 别名]
def __init__(self, vs):
self._matrix = self._assemble_poisson_matrix(vs)
jacobi_precon = self._jacobi_preconditioner(vs, self._matrix)
self._matrix = jacobi_precon * self._matrix
self._rhs_scale = jacobi_precon.diagonal()
self._extra_args = {}
logger.info('Computing ILU preconditioner...')
ilu_preconditioner = spalg.spilu(self._matrix.tocsc(), drop_tol=1e-6, fill_factor=100)
self._extra_args['M'] = spalg.LinearOperator(self._matrix.shape, ilu_preconditioner.solve)
示例4: __init__
# 需要导入模块: from scipy.sparse import linalg [as 别名]
# 或者: from scipy.sparse.linalg import spilu [as 别名]
def __init__(self,
A,
drop_tol=0.005,
fill_factor=2.0,
normalize_inplace=False):
# the spilu and gmres functions are most efficient with csc sparse. If the
# matrix is already csc then this will do nothing
A = sp.csc_matrix(A)
n = row_norms(A)
if normalize_inplace:
divide_rows(A, n, inplace=True)
else:
A = divide_rows(A, n, inplace=False).tocsc()
LOGGER.debug(
'computing the ILU decomposition of a %s by %s sparse matrix with %s '
'nonzeros ' % (A.shape + (A.nnz,)))
ilu = spla.spilu(
A,
drop_rule='basic',
drop_tol=drop_tol,
fill_factor=fill_factor)
LOGGER.debug('done')
M = spla.LinearOperator(A.shape, ilu.solve)
self.A = A
self.M = M
self.n = n
示例5: init_solver
# 需要导入模块: from scipy.sparse import linalg [as 别名]
# 或者: from scipy.sparse.linalg import spilu [as 别名]
def init_solver(self,L):
global linalg
from scipy.sparse import linalg
ilu= linalg.spilu(self.L1.tocsc())
n=self.n-1
self.M = linalg.LinearOperator(shape=(n,n), matvec=ilu.solve)
示例6: init_solver
# 需要导入模块: from scipy.sparse import linalg [as 别名]
# 或者: from scipy.sparse.linalg import spilu [as 别名]
def init_solver(self, L):
global linalg
from scipy.sparse import linalg
ilu = linalg.spilu(self.L1.tocsc())
n = self.n - 1
self.M = linalg.LinearOperator(shape=(n, n), matvec=ilu.solve)
示例7: ilu_linsolver
# 需要导入模块: from scipy.sparse import linalg [as 别名]
# 或者: from scipy.sparse.linalg import spilu [as 别名]
def ilu_linsolver(A, b):
"""
ILU wrapper function for linear system solve A x = b
:param A: System matrix
:param b: right hand side
:return: solution
"""
return spilu(A).solve(b)
示例8: init_solver
# 需要导入模块: from scipy.sparse import linalg [as 别名]
# 或者: from scipy.sparse.linalg import spilu [as 别名]
def init_solver(self, L):
global linalg
from scipy.sparse import linalg
ilu = linalg.spilu(self.L1.tocsc())
n = self.n-1
self.M = linalg.LinearOperator(shape=(n, n), matvec=ilu.solve)