本文整理汇总了Python中scipy.sparse.linalg.onenormest方法的典型用法代码示例。如果您正苦于以下问题:Python linalg.onenormest方法的具体用法?Python linalg.onenormest怎么用?Python linalg.onenormest使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类scipy.sparse.linalg
的用法示例。
在下文中一共展示了linalg.onenormest方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: expop_multiply_prep
# 需要导入模块: from scipy.sparse import linalg [as 别名]
# 或者: from scipy.sparse.linalg import onenormest [as 别名]
def expop_multiply_prep(op, A_1_norm=None, tol=EXPM_DEFAULT_TOL):
"""
Returns "prepared" meta-info about operation op,
which is assumed to be traceless (so no shift is needed).
Used as input for use with _custom_expm_multiply_simple_core
or fast C-reps.
"""
assert(isinstance(op, _spsl.LinearOperator))
if len(op.shape) != 2 or op.shape[0] != op.shape[1]:
raise ValueError('expected op to have equal input and output dimensions')
# n = op.shape[0]
n0 = 1 # always act exp(op) on *single* vectors
mu = 0 # _spsl._expm_multiply._trace(A) / float(n)
#ASSUME op is *traceless*
#FUTURE: get exact_1_norm specific for our ops - now just use approximate
if A_1_norm is None:
A_1_norm = _spsl.onenormest(op)
#t = 1.0 # always, so t*<X> => just <X> below
if A_1_norm == 0:
m_star, s = 0, 1
else:
ell = 2
norm_info = _spsl._expm_multiply.LazyOperatorNormInfo(op, A_1_norm=A_1_norm, ell=ell)
m_star, s = _spsl._expm_multiply._fragment_3_1(norm_info, n0, tol, ell=ell)
eta = 1.0 # _np.exp(t*mu / float(s)) # b/c mu always == 0 (traceless assumption)
return mu, m_star, s, eta
示例2: _onenormest_m1_power
# 需要导入模块: from scipy.sparse import linalg [as 别名]
# 或者: from scipy.sparse.linalg import onenormest [as 别名]
def _onenormest_m1_power(A, p,
t=2, itmax=5, compute_v=False, compute_w=False):
"""
Efficiently estimate the 1-norm of (A - I)^p.
Parameters
----------
A : ndarray
Matrix whose 1-norm of a power is to be computed.
p : int
Non-negative integer power.
t : int, optional
A positive parameter controlling the tradeoff between
accuracy versus time and memory usage.
Larger values take longer and use more memory
but give more accurate output.
itmax : int, optional
Use at most this many iterations.
compute_v : bool, optional
Request a norm-maximizing linear operator input vector if True.
compute_w : bool, optional
Request a norm-maximizing linear operator output vector if True.
Returns
-------
est : float
An underestimate of the 1-norm of the sparse matrix.
v : ndarray, optional
The vector such that ||Av||_1 == est*||v||_1.
It can be thought of as an input to the linear operator
that gives an output with particularly large norm.
w : ndarray, optional
The vector Av which has relatively large 1-norm.
It can be thought of as an output of the linear operator
that is relatively large in norm compared to the input.
"""
return onenormest(_MatrixM1PowerOperator(A, p),
t=t, itmax=itmax, compute_v=compute_v, compute_w=compute_w)
示例3: GetConditionNumber
# 需要导入模块: from scipy.sparse import linalg [as 别名]
# 或者: from scipy.sparse.linalg import onenormest [as 别名]
def GetConditionNumber(self,A):
self.matrix_condition_number = onenormest(K_b)
return self.matrix_condition_number