本文整理汇总了Python中scipy.sparse.lil_matrix方法的典型用法代码示例。如果您正苦于以下问题:Python sparse.lil_matrix方法的具体用法?Python sparse.lil_matrix怎么用?Python sparse.lil_matrix使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类scipy.sparse
的用法示例。
在下文中一共展示了sparse.lil_matrix方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: random_lil
# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import lil_matrix [as 别名]
def random_lil(shape, dtype, nnz):
rval = sp.lil_matrix(shape, dtype=dtype)
huge = 2 ** 30
for k in range(nnz):
# set non-zeros in random locations (row x, col y)
idx = numpy.random.random_integers(huge, size=2) % shape
value = numpy.random.rand()
# if dtype *int*, value will always be zeros!
if "int" in dtype:
value = int(value * 100)
# The call to tuple is needed as scipy 0.13.1 do not support
# ndarray with lenght 2 as idx tuple.
rval.__setitem__(
tuple(idx),
value)
return rval
示例2: toSparse
# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import lil_matrix [as 别名]
def toSparse(baseX, X, dictionary):
# convert baseX & X (a list of dictionaries), to a sparse matrix, using dictionary to map to indices
out = lil_matrix((len(X),len(dictionary)))
for i, (basex, x) in enumerate(zip(baseX, X)) :
for key in basex :
if key not in dictionary :
continue
out[i,dictionary[key]] = basex[key]
for key in x :
if key not in dictionary :
continue
out[i,dictionary[key]] = x[key]
out = out.tocsr()
return out
# classifiers define :
# train(X,y)
# predict(X)
# params()
# load(params)
# X is a sparse matrix, y is a vector of class labels (ints)
示例3: get_to_std
# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import lil_matrix [as 别名]
def get_to_std(self):
'''
Retrieve the matrix that transforms a vector from this basis to the
standard basis of this basis's dimension.
Returns
-------
numpy array or scipy.sparse.lil_matrix
An array of shape `(dim, size)` where `dim` is the dimension
of this basis (the length of its vectors) and `size` is the
size of this basis (its number of vectors).
'''
if self.sparse:
toStd = _sps.lil_matrix((self.dim, self.size), dtype='complex')
else:
toStd = _np.zeros((self.dim, self.size), 'complex')
for i, vel in enumerate(self.vector_elements):
toStd[:, i] = vel
return toStd
示例4: _lazy_build_vector_elements
# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import lil_matrix [as 别名]
def _lazy_build_vector_elements(self):
if self.sparse:
compMxs = []
else:
compMxs = _np.zeros((self.size, self.dim), 'complex')
i, start = 0, 0
for compbasis in self.component_bases:
for lbl, vel in zip(compbasis.labels, compbasis.vector_elements):
assert(_sps.issparse(vel) == self.sparse), "Inconsistent sparsity!"
if self.sparse:
mx = _sps.lil_matrix((self.dim, 1))
mx[start:start + compbasis.dim, 0] = vel
compMxs.append(mx)
else:
compMxs[i, start:start + compbasis.dim] = vel
i += 1
start += compbasis.dim
assert(i == self.size)
self._vector_elements = compMxs
示例5: get_new_term_doc_mat
# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import lil_matrix [as 别名]
def get_new_term_doc_mat(self, doc_domains, non_text=False):
'''
Combines documents together that are in the same domain
Parameters
----------
doc_domains : array-like
Returns
-------
scipy.sparse.csr_matrix
'''
assert len(doc_domains) == self.term_doc_matrix.get_num_docs()
doc_domain_set = set(doc_domains)
num_terms = self.term_doc_matrix.get_num_metadata() if non_text else self.term_doc_matrix.get_num_terms()
num_domains = len(doc_domain_set)
domain_mat = lil_matrix((num_domains, num_terms), dtype=int)
X = self.term_doc_matrix.get_metadata_doc_mat() if non_text else self.term_doc_matrix.get_term_doc_mat()
for i, domain in enumerate(doc_domain_set):
domain_mat[i, :] = X[np.array(doc_domains == domain)].sum(axis=0)
return domain_mat.tocsr()
示例6: _flip_random_edges
# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import lil_matrix [as 别名]
def _flip_random_edges(A, percent):
"""
Flips values of A randomly.
:param A: binary scipy sparse matrix.
:param percent: percent of the edges to flip.
:return: binary scipy sparse matrix.
"""
if not A.shape[0] == A.shape[1]:
raise ValueError('A must be a square matrix.')
dtype = A.dtype
A = sp.lil_matrix(A).astype(np.bool)
n_elem = A.shape[0] ** 2
n_elem_to_flip = round(percent * n_elem)
unique_idx = np.random.choice(n_elem, replace=False, size=n_elem_to_flip)
row_idx = unique_idx // A.shape[0]
col_idx = unique_idx % A.shape[0]
idxs = np.stack((row_idx, col_idx)).T
for i in idxs:
i = tuple(i)
A[i] = np.logical_not(A[i])
A = A.tocsr().astype(dtype)
A.eliminate_zeros()
return A
示例7: solve
# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import lil_matrix [as 别名]
def solve(self):
shape = self.bcs.shape
if self._L is None:
self._L = self.lhs.matrix(shape) # expensive operation, so cache it
L = sparse.lil_matrix(self._L)
f = self.rhs.reshape(-1, 1)
nz = list(self.bcs.row_inds())
L[nz, :] = self.bcs.lhs[nz, :]
f[nz] = np.array(self.bcs.rhs[nz].toarray()).reshape(-1, 1)
L = sparse.csr_matrix(L)
return spsolve(L, f).reshape(shape)
示例8: __setitem__
# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import lil_matrix [as 别名]
def __setitem__(self, key, value):
lng_inds = self.long_indices[key]
if isinstance(value, tuple): # Neumann BC
op, value = value
# Avoid calling matrix for the whole grid! Optimize later!
mat = sparse.lil_matrix(op.matrix(self.shape))
self.lhs[lng_inds, :] = mat[lng_inds, :]
else: # Dirichlet BC
self.lhs[lng_inds, lng_inds] = 1
if isinstance(value, np.ndarray):
value = value.reshape(-1)[lng_inds]
for i, v in zip(lng_inds, value):
self.rhs[i] = v
else:
self.rhs[lng_inds] = value
示例9: test_score_samples
# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import lil_matrix [as 别名]
def test_score_samples():
# Test score_samples (pseudo-likelihood) method.
# Assert that pseudo-likelihood is computed without clipping.
# See Fabian's blog, http://bit.ly/1iYefRk
rng = np.random.RandomState(42)
X = np.vstack([np.zeros(1000), np.ones(1000)])
rbm1 = BernoulliRBM(n_components=10, batch_size=2,
n_iter=10, random_state=rng)
rbm1.fit(X)
assert (rbm1.score_samples(X) < -300).all()
# Sparse vs. dense should not affect the output. Also test sparse input
# validation.
rbm1.random_state = 42
d_score = rbm1.score_samples(X)
rbm1.random_state = 42
s_score = rbm1.score_samples(lil_matrix(X))
assert_almost_equal(d_score, s_score)
# Test numerical stability (#2785): would previously generate infinities
# and crash with an exception.
with np.errstate(under='ignore'):
rbm1.score_samples([np.arange(1000) * 100])
示例10: test_label_binarize_multilabel
# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import lil_matrix [as 别名]
def test_label_binarize_multilabel():
y_ind = np.array([[0, 1, 0], [1, 1, 1], [0, 0, 0]])
classes = [0, 1, 2]
pos_label = 2
neg_label = 0
expected = pos_label * y_ind
y_sparse = [sparse_matrix(y_ind)
for sparse_matrix in [coo_matrix, csc_matrix, csr_matrix,
dok_matrix, lil_matrix]]
for y in [y_ind] + y_sparse:
check_binarized_results(y, classes, pos_label, neg_label,
expected)
assert_raises(ValueError, label_binarize, y, classes, neg_label=-1,
pos_label=pos_label, sparse_output=True)
示例11: _setup_metric
# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import lil_matrix [as 别名]
def _setup_metric(X, true_labels, inv_psp=None, k=5):
assert compatible_shapes(X, true_labels), \
"ground truth and prediction matrices must have same shape."
num_instances, num_labels = true_labels.shape
indices = _get_topk(X, num_labels, k)
ps_indices = None
if inv_psp is not None:
ps_indices = _get_topk(
true_labels.dot(
sp.spdiags(inv_psp, diags=0,
m=num_labels, n=num_labels)),
num_labels, k)
inv_psp = np.hstack([inv_psp, np.zeros((1))])
true_labels = sp.hstack([true_labels,
sp.lil_matrix((num_instances, 1),
dtype=np.int32)]).tocsr()
return indices, true_labels, ps_indices, inv_psp
示例12: vectorize
# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import lil_matrix [as 别名]
def vectorize(features, vocab):
""" Transform a features list into a numeric vector
with a given vocab
:type dpvocab: dict
:param dpvocab: vocab for distributional representation
:type projmat: scipy.lil_matrix
:param projmat: projection matrix for disrep
"""
vec = lil_matrix((1, len(vocab)))
for feat in features:
try:
fidx = vocab[feat]
vec[0, fidx] += 1.0
except KeyError:
pass
# Normalization
vec = normalize(vec)
return vec
示例13: compute_cooccurrence_constraint
# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import lil_matrix [as 别名]
def compute_cooccurrence_constraint(self, nodes):
"""
Co-occurrence constraint as described in the paper.
Parameters
----------
nodes: np.array
Nodes whose features are considered for change
Returns
-------
np.array [len(nodes), D], dtype bool
Binary matrix of dimension len(nodes) x D. A 1 in entry n,d indicates that
we are allowed to add feature d to the features of node n.
"""
words_graph = self.cooc_matrix.copy()
D = self.X_obs.shape[1]
words_graph.setdiag(0)
words_graph = (words_graph > 0)
word_degrees = np.sum(words_graph, axis=0).A1
inv_word_degrees = np.reciprocal(word_degrees.astype(float) + 1e-8)
sd = np.zeros([self.N])
for n in range(self.N):
n_idx = self.X_obs[n, :].nonzero()[1]
sd[n] = np.sum(inv_word_degrees[n_idx.tolist()])
scores_matrix = sp.lil_matrix((self.N, D))
for n in nodes:
common_words = words_graph.multiply(self.X_obs[n])
idegs = inv_word_degrees[common_words.nonzero()[1]]
nnz = common_words.nonzero()[0]
scores = np.array([idegs[nnz == ix].sum() for ix in range(D)])
scores_matrix[n] = scores
self.cooc_constraint = sp.csr_matrix(scores_matrix - 0.5 * sd[:, None] > 0)
示例14: feature_scores
# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import lil_matrix [as 别名]
def feature_scores(self):
"""
Compute feature scores for all possible feature changes.
"""
if self.cooc_constraint is None:
self.compute_cooccurrence_constraint(self.influencer_nodes)
logits = self.compute_logits()
best_wrong_class = self.strongest_wrong_class(logits)
gradient = self.gradient_wrt_x(self.label_u) - self.gradient_wrt_x(best_wrong_class)
surrogate_loss = logits[self.label_u] - logits[best_wrong_class]
gradients_flipped = (gradient * -1).tolil()
gradients_flipped[self.X_obs.nonzero()] *= -1
X_influencers = sp.lil_matrix(self.X_obs.shape)
X_influencers[self.influencer_nodes] = self.X_obs[self.influencer_nodes]
gradients_flipped = gradients_flipped.multiply((self.cooc_constraint + X_influencers) > 0)
nnz_ixs = np.array(gradients_flipped.nonzero()).T
sorting = np.argsort(gradients_flipped[tuple(nnz_ixs.T)]).A1
sorted_ixs = nnz_ixs[sorting]
grads = gradients_flipped[tuple(nnz_ixs[sorting].T)]
scores = surrogate_loss - grads
return sorted_ixs[::-1], scores.A1[::-1]
示例15: vxc_lil
# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import lil_matrix [as 别名]
def vxc_lil(self, **kw):
"""
Computes the exchange-correlation matrix elements
Args:
sv : (System Variables), this must have arrays of coordinates and species, etc
Returns:
fxc,vxc,exc
"""
from pyscf.nao.m_xc_scalar_ni import xc_scalar_ni
from pyscf.nao.m_ao_matelem import ao_matelem_c
from scipy.sparse import lil_matrix
#dm, xc_code, deriv, ao_log=None, dtype=float64, **kvargs
dm = kw['dm'] if 'dm' in kw else self.make_rdm1()
kernel = kw['kernel'] if 'kernel' in kw else None
ao_log = kw['ao_log'] if 'ao_log' in kw else self.ao_log
xc_code = kw['xc_code'] if 'xc_code' in kw else self.xc_code
kw.pop('xc_code',None)
dtype = kw['dtype'] if 'dtype' in kw else self.dtype
aome = ao_matelem_c(self.ao_log.rr, self.ao_log.pp, self, dm)
me = aome.init_one_set(self.ao_log) if ao_log is None else aome.init_one_set(ao_log)
atom2s = zeros((self.natm+1), dtype=int64)
for atom,sp in enumerate(self.atom2sp): atom2s[atom+1]=atom2s[atom]+me.ao1.sp2norbs[sp]
lil = [lil_matrix((atom2s[-1],atom2s[-1]), dtype=dtype) for i in range((self.nspin-1)*2+1)]
for atom1,[sp1,rv1,s1,f1] in enumerate(zip(self.atom2sp,self.atom2coord,atom2s,atom2s[1:])):
for atom2,[sp2,rv2,s2,f2] in enumerate(zip(self.atom2sp,self.atom2coord,atom2s,atom2s[1:])):
blk = xc_scalar_ni(me,sp1,rv1,sp2,rv2,xc_code=xc_code,**kw)
for i,b in enumerate(blk): lil[i][s1:f1,s2:f2] = b[:,:]
return lil