本文整理汇总了Python中scipy.sparse.indices方法的典型用法代码示例。如果您正苦于以下问题:Python sparse.indices方法的具体用法?Python sparse.indices怎么用?Python sparse.indices使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类scipy.sparse
的用法示例。
在下文中一共展示了sparse.indices方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: load
# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import indices [as 别名]
def load(cls, fname, mmap=None):
"""
Load a previously saved object from file (also see `save`).
If the object was saved with large arrays stored separately, you can load
these arrays via mmap (shared memory) using `mmap='r'`. Default: don't use
mmap, load large arrays as normal objects.
"""
logger.info("loading %s object from %s" % (cls.__name__, fname))
subname = lambda suffix: fname + '.' + suffix + '.npy'
obj = unpickle(fname)
for attrib in getattr(obj, '__numpys', []):
logger.info("loading %s from %s with mmap=%s" % (attrib, subname(attrib), mmap))
setattr(obj, attrib, numpy.load(subname(attrib), mmap_mode=mmap))
for attrib in getattr(obj, '__scipys', []):
logger.info("loading %s from %s with mmap=%s" % (attrib, subname(attrib), mmap))
sparse = unpickle(subname(attrib))
sparse.data = numpy.load(subname(attrib) + '.data.npy', mmap_mode=mmap)
sparse.indptr = numpy.load(subname(attrib) + '.indptr.npy', mmap_mode=mmap)
sparse.indices = numpy.load(subname(attrib) + '.indices.npy', mmap_mode=mmap)
setattr(obj, attrib, sparse)
for attrib in getattr(obj, '__ignoreds', []):
logger.info("setting ignored attribute %s to None" % (attrib))
setattr(obj, attrib, None)
return obj
示例2: run
# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import indices [as 别名]
def run(self):
if self.as_numpy:
import numpy # don't clutter the global namespace with a dependency on numpy
it = iter(self.corpus)
while True:
chunk = itertools.islice(it, self.chunksize)
if self.as_numpy:
# HACK XXX convert documents to numpy arrays, to save memory.
# This also gives a scipy warning at runtime:
# "UserWarning: indices array has non-integer dtype (float64)"
wrapped_chunk = [[numpy.asarray(doc) for doc in chunk]]
else:
wrapped_chunk = [list(chunk)]
if not wrapped_chunk[0]:
self.q.put(None, block=True)
break
try:
qsize = self.q.qsize()
except NotImplementedError:
qsize = '?'
logger.debug("prepared another chunk of %i documents (qsize=%s)" %
(len(wrapped_chunk[0]), qsize))
self.q.put(wrapped_chunk.pop(), block=True)
#endclass InputQueue
示例3: load
# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import indices [as 别名]
def load(cls, fname, mmap=None):
"""
Load a previously saved object from file (also see `save`).
If the object was saved with large arrays stored separately, you can load
these arrays via mmap (shared memory) using `mmap='r'`. Default: don't use
mmap, load large arrays as normal objects.
"""
#logger.info("loading %s object from %s" % (cls.__name__, fname))
subname = lambda suffix: fname + '.' + suffix + '.npy'
obj = unpickle(fname)
for attrib in getattr(obj, '__numpys', []):
logger.info("loading %s from %s with mmap=%s" % (attrib, subname(attrib), mmap))
setattr(obj, attrib, numpy.load(subname(attrib), mmap_mode=mmap))
for attrib in getattr(obj, '__scipys', []):
logger.info("loading %s from %s with mmap=%s" % (attrib, subname(attrib), mmap))
sparse = unpickle(subname(attrib))
sparse.data = numpy.load(subname(attrib) + '.data.npy', mmap_mode=mmap)
sparse.indptr = numpy.load(subname(attrib) + '.indptr.npy', mmap_mode=mmap)
sparse.indices = numpy.load(subname(attrib) + '.indices.npy', mmap_mode=mmap)
setattr(obj, attrib, sparse)
for attrib in getattr(obj, '__ignoreds', []):
#logger.info("setting ignored attribute %s to None" % (attrib))
setattr(obj, attrib, None)
return obj
示例4: _load_specials
# 需要导入模块: from scipy import sparse [as 别名]
# 或者: from scipy.sparse import indices [as 别名]
def _load_specials(self, fname, mmap, compress, subname):
"""
Loads any attributes that were stored specially, and gives the same
opportunity to recursively included SaveLoad instances.
"""
mmap_error = lambda x, y: IOError(
'Cannot mmap compressed object %s in file %s. ' % (x, y) +
'Use `load(fname, mmap=None)` or uncompress files manually.')
for attrib in getattr(self, '__recursive_saveloads', []):
cfname = '.'.join((fname, attrib))
logger.info("loading %s recursively from %s.* with mmap=%s" % (
attrib, cfname, mmap))
getattr(self, attrib)._load_specials(cfname, mmap, compress, subname)
for attrib in getattr(self, '__numpys', []):
logger.info("loading %s from %s with mmap=%s" % (
attrib, subname(fname, attrib), mmap))
if compress:
if mmap:
raise mmap_error(attrib, subname(fname, attrib))
val = numpy.load(subname(fname, attrib))['val']
else:
val = numpy.load(subname(fname, attrib), mmap_mode=mmap)
setattr(self, attrib, val)
for attrib in getattr(self, '__scipys', []):
logger.info("loading %s from %s with mmap=%s" % (
attrib, subname(fname, attrib), mmap))
sparse = unpickle(subname(fname, attrib))
if compress:
if mmap:
raise mmap_error(attrib, subname(fname, attrib))
with numpy.load(subname(fname, attrib, 'sparse')) as f:
sparse.data = f['data']
sparse.indptr = f['indptr']
sparse.indices = f['indices']
else:
sparse.data = numpy.load(subname(fname, attrib, 'data'), mmap_mode=mmap)
sparse.indptr = numpy.load(subname(fname, attrib, 'indptr'), mmap_mode=mmap)
sparse.indices = numpy.load(subname(fname, attrib, 'indices'), mmap_mode=mmap)
setattr(self, attrib, sparse)
for attrib in getattr(self, '__ignoreds', []):
logger.info("setting ignored attribute %s to None" % (attrib))
setattr(self, attrib, None)